
How to build a visualization
application for very large data

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Thank you!

!! Thank you to Thierry, Laurent, and
the organizers…

!! Thank you to all of you for coming…

!! … and my family thanks you too!

Why are visualization tools/
frameworks important?

!! Visualization and analysis is an enabling
technology: it is important that we have products
that we can deploy to users.

!! Visualization is often explorative

!!Users want to employ a variety of rich techniques to
better understand their data. Visualization tools

enable this.

!! Visualization tools can be written for many
application areas simultaneously.

!!The large investment it takes to make a tool can pay

off by benefiting many groups.

Why are visualization tools/
frameworks important?

!! Visualization and analysis is an enabling
technology: it is important that we have products
that we can deploy to users.

!! Visualization is often explorative

!!Users want to employ a variety of rich techniques to
better understand their data. Visualization tools

enable this.

!! Visualization tools can be written for many
application areas simultaneously.

!!The large investment it takes to make a tool can pay

off by benefiting many groups.

This course is primarily about visualization tools/

frameworks: what techniques they use and how to
make them be successful.

Overview of this course

!! Monday, June 13th, 2011

!! Lecture #1 (right now!): 90 minutes
"! Course overview

"! Three Strategies for Three Epochs

!! Lecture #2: 60 minutes

"! Data flow networks

"! VTK

"! OpenDX

!! Lecture #3: 30 minutes

"! MPI overview

!!Overview of Hands-On Session #1

!!Hands-On Session #1

"! Read + Process + Render

Overview of this course

!! Tuesday June 14th, 2011

!!Lecture #4: 90 minutes

"!Parallel visualization

"! Architecture

"! “Contracts”

"! Rendering

"! IceT

"!Performance study

!!Overview of Hands-On Session #2

!!Hands-On Session #2

"!Parallelizing your program

Overview of this course

!! Wednesday June 15th, 2011

!!Lecture #5: 60 minutes

"!Non-embarrassingly parallel algorithms

!!Lecture #6: 30 minutes

"!Hybrid parallelism

!!Overview of Hands-On Session #3

!!Hands-On Session #3 (for half of you)

"!Accelerating your processing

"!A non-embarrassingly parallel algorithm

Overview of this course

!! Thursday June 16th, 2011

!!Lecture #7: 120 minutes

"!Smart techniques:

"! In situ visualization

"! Multi-resolution visualization

"! Query driven visualization

"!Overview of Hands-On Session #4

!!Hands-On Session #3 (for half of you)

"!Accelerating your processing

"!A non-embarrassingly parallel algorithm

!!Hands-On Session #4 (for half of you)

"!Performance analysis

Overview of this course

!! Friday June 17th, 2011

!!Lecture #8: 120 minutes

"!Putting it all together:

"! What it takes to deploy a visualization tool

"! “Tutorial”

"! Demonstrate UI

"! Demonstrate power of data flow networks

!!Hands-On Session #4 (for half of you)

"!Performance analysis

"! (I will not attend this session.)

Bonus mini-lecture

!! How can we better understand data?

!!High resolution data?

!!Ensembles of data?

{TERA|PETA|EXA}-SCALE
VISUALIZATION:

Three Strategies For Three Epochs

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Supercomputing 101

!! Why simulation?
!! Simulations are sometimes more cost effective than

experiments.

!!New model for science has three legs: theory, experiment, and
simulation.

!! FLOPs: How supercomputers are measured
!! 1 FLOP = 1 Floating point operation per second

!! 1 GigaFLOP = 1 billion FLOPs

!! 1 TeraFLOP = 1000 GigaFLOPs, 1 PetaFlop = 1,000,000
GigaFLOPs, 1 ExaFLOP = 1,000,000,000 GigaFLOPs

Supercomputing 101

!! What are the three epochs?

!! Terascale = TeraFLOP + TeraBytes of memory + Tera/
PetaBytes on disk

!! Petascale = PetaFLOPs + petabytes on disk + petabytes of
memory

!! Exascale = ExaFLOPs + exabyte disk + petabytes of memory

!! Why terascale/petascale/exascale?
!!More compute cycles, more memory, etc, lead for faster and/

or more accurate simulations.

Petascale computing arrived in
2009.

LANL RoadRunner ORNL Jaguar

Julich JUGene UTK Kraken

An order of magnitude jump in
computing in the next year.

!! Two ~20PFlop machines will be online in 2011/2012

LLNL Sequoia NCSA BlueWaters

A really big change in computing
happened last year…

China’s Tianhe machine

… and this change is the springboard

to exascale computing.

International Exascale Software Project
www.exascale.org

The International Exascale

Software Roadmap,

J. Dongarra, P. Beckman, et al.,

International Journal of High

Performance Computer

Applications 25(1), 2011, ISSN

1094-3420. (Publ. 6 Jan 2011)

How does increased computing power
affect the data to be visualized?

Large # of time steps

Large ensembles

High-res meshes

Large # of variables

/ more physics

Your mileage may vary; some

simulations produce a lot of data
and some don’t.

Thanks!: Sean Ahern & Ken Joy

Some history behind this
presentation…

!!“Architectural Problems and Solutions for Petascale

Visualization and Analysis”

Some history behind this
presentation…

!! “Why Petascale Visualization Will Changes The Rules”

NSF Workshop on Petascale I/O

Some history behind this
presentation…

!! “Why Petascale Visualization Will Changes The Rules”

NSF Workshop on Petascale I/O

“Exascale Visualization: Get Ready For a Whole New World”

Fable: The Boy Who Cried Wolf

!! Once there was a shepherd boy who had to look
after a flock of sheep. One day, he felt bored and
decided to play a trick on the villagers. He
shouted, “Help! Wolf! Wolf!” The villagers heard
his cries and rushed out of the village to help the
shepherd boy. When they reached him, they asked,
“Where is the wolf?” The shepherd boy laughed
loudly, “Ha, Ha, Ha! I fooled all of you. I was only
playing a trick on you.”

Fable: The Boy Who Cried Wolf

!! Once there was a viz expert who had to look
after customers. One day, he needed funding and
decided to play a trick on his funders. He shouted,
“Help! Big Big Data!” The funders heard his cries
and sent lots of money to help the viz expert.
When petascale arrived, they asked, “Where is the
problem?” The viz expert shrugged and said, “The
problem isn’t quite here yet, but it will be soon.”

This is NOT the story of this presentation.

The message from this
presentation…

Petascale Visualization Exascale Visualization

I/O Bandwidth
I/O Bandwidth

Data Movement

Data Movement’s

4 Angry Pups

Terascale Visualization

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

Production visualization tools use
“pure parallelism” to process data.

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Pure parallelism

!! Pure parallelism is data-level parallelism, but…

!!Multi-resolution can be data-level parallelism

!!Out-of-core can be data-level parallelism

!! Pure parallelism: “brute force” … processing full
resolution data using data-level parallelism

!! Pros:

!!Easy to implement

!! Cons:

!!Requires large I/O capabilities

!!Requires large amount of primary memory

Pure parallelism and today’s tools

!! Three of the most popular end user visualization
tools -- VisIt, ParaView, & EnSight -- primarily
employ a pure parallelism + client-server strategy.

!!All tools working on advanced techniques as well

!! Of course, there’s lots more technology out there
besides those three tools…

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

I/O and visualization

"! Pure parallelism is almost

always >50% I/O and
sometimes 98% I/O

"! Amount of data to visualize
is typically O(total mem)

!∀#∃%& ∋()∗+,& −.#&

/(+0%102(&)01345(&

6∃(70%102(&)01345(8&

"! Two big factors:

①! how much data you have to read

②! how fast you can read it

"! # Relative I/O (ratio of total memory and I/O) is key

Trends in I/O

Machine Year Time to write memory

ASCI Red 1997 300 sec

ASCI Blue Pacific 1998 400 sec

ASCI White 2001 660 sec

ASCI Red Storm 2004 660 sec

ASCI Purple 2005 500 sec

Jaguar XT4 2007 1400 sec

Roadrunner 2008 1600 sec

Jaguar XT5 2008 1250 sec

c/o David Pugmire, ORNL

Why is relative I/O getting slower?

!! I/O is quickly becoming a dominant cost in the
overall supercomputer procurement.

!!And I/O doesn’t pay the bills.

!! Simulation codes aren’t as exposed.

We need to de-emphasize I/O in our

visualization and analysis techniques.

There are “smart techniques” that
de-emphasize memory and I/O.

!! Out of core

!! Data subsetting

!! Multi-resolution

!! In situ

Out-of-core iterates pieces of data
through the pipeline one at a time.

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Out-of-core: pros and cons

!! Pros:

!!Lower requirement for primary memory

!!Doesn’t require big machines

!! Cons:

!!Still paying large I/O costs

!!Slow

Data subsetting eliminates pieces that
don’t contribute to the final picture.

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Data Subsetting: pros and cons

!! Pros:

!!Less data to process (less I/O, less memory)

!! Cons:

!!Only applicable to some algorithms

Multi-resolution techniques use
coarse representations then refine.

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

P2!

P4!

Multi-resolution techniques

!! Pros

!!Drastically reduce I/O & memory requirements

!!Confidence in pictures; multi-res hierarchy addresses
“many cells to one pixel issue”

!! Cons

!!Not always meaningful to process simplified version of
the data.

!!How do we generate hierarchical representations
during dump? What costs do they incur (data
movement costs, storage costs)?

In situ processing does visualization
as part of the simulation.

P0!

P1!

P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

GetAccess

ToData
Process Render

Processor 0

Parallelized visualization data flow network
Parallel Simulation Code

GetAccess

ToData
Process Render

Processor 1

GetAccess

ToData
Process Render

Processor 2

GetAccess

ToData
Process Render

Processor 9

… … … …

In situ

!! In situ processing can mean multiple things

!!Will discuss this more later in the talk

!! Common perceptions of in situ

!!Pros:

"!No I/O & plenty of compute

!!Cons:

"!Very memory constrained

"!Some operations not possible

"! Once the simulation has advanced, you cannot go back and
analyze it

"!User must know what to look a priori

Petascale visualization will likely
require a lot of solutions.

All visualization and analysis work

Multi-res

In situ

Out-of-core

Data subsetting

Do remaining ~5% on SC

w/ pure parallelism

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

Exascale assumptions

!! The machine will be capable of one exaflop.

!! The machine will cost < $200M.

!! The machine will use < 20MW.

!! The machine may arrive as early as 2018.

Hurdle #1: power requires slower
clocks and greater concurrency

c/o SciDAC Review 16, February 2010

Accelerator technologies

!! Currently simultaneously
thinking about two different
accelerator technologies:
!! IBM BlueGene’s successor – some

architectural merger of BlueGene,
Power, and Cell

!! GPU / GPU evolution

!! Referred to as “swim lanes”: a
visual element used in process flow
diagrams, or flowcharts, that
visually distinguishes
responsibilities for sub-processes
of a business process.

I/O Disk

Accelerator

GPU BG
Net-

work
…

Hurdle #2: memory capacity eats
up the entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
o
st

 i
n
 M

il
li
o
n
s

o
f

D
o
ll
a
rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf, LBNL

Hurdle #3: memory bandwidth
eats up the entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

o
ry

 P
o
w

er
 C

o
n
su

m
p
ti
o
n
 i
n
 M

e
g
a

w
a

tt
s

(M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf, LBNL

The change in memory bandwidth to compute
ratio will lead to new approaches.

!! Example: linear solvers

!! They start with a rough approximation and converge
through an iterative process.

"! 1.125 # 1.1251 # 1.125087 # 1.12508365

!! Each iteration requires sending some numbers to
neighboring processors to account for neighborhoods split
over multiple nodes.

!! Proposed exascale technique: devote some threads of the
accelerator to calculating the difference from the previous iteration

and just sending the difference.

"! Takes advantage of “free” compute and minimizes expensive
memory movement.

Inspired by David Keyes, KAUST

The trade space for exascale is
very complex.

memory

nodes

c/o A. White, LANL

Total system

cost

Minimum

memory per
node

requirement

One exaflop

Feasible

systems

Exascale: a heterogeneous, distributed
memory GigaHz KiloCore MegaNode system

~3

c/o P. Beckman, Argonne

Architectural changes will make
writing fast and reading slow.

!! Great idea: put SSDs on the node

!!Great idea for the simulations …

!!… scary world for visualization and analysis

"!We have lost our biggest ally in lobbying the HPC

procurement folks

"!We are unique as data consumers.

!! $200M is not enough…

!!The quote: “1/3 memory, 1/3 I/O, 1/3 networking …
and the flops are free”

!!Budget stretched to its limit and won’t spend more on
I/O.

Summarizing exascale visualization

!! Hard to get data off the machine.

!!And we can’t read it in if we do get it off.

!! Hard to even move it around the machine.

!! # Beneficial to process the data in situ.

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!!Pup #1: In Situ Systems Research

!! Under-represented topics

!! Conclusions

Summarizing flavors of in situ
In Situ
Technique

Aliases Description Negative Aspects

Tightly
coupled

Synchronous,
co-processing

Visualization and analysis
have direct access to
memory of simulation code

1)! Very memory
constrained

2)! Large potential impact
(performance, crashes)

Loosely
coupled

Asynchronous,
concurrent

Visualization and analysis
run on concurrent resources
and access data over
network

1)! Data movement costs
2)! Requires separate

resources

Hybrid Data is reduced in a
tightly coupled setting and
sent to a concurrent
resource

1)! Complex
2)! Shares negative aspects

(to a lesser extent) of
others

Possible in situ visualization scenarios

Visualization could be a service in this system (tightly coupled)…

… or visualization could be done on a separate node located nearby dedicated to

visualization/analysis/IO/etc. (loosely coupled)

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

…

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

One of many

nodes dedicated
to vis/analysis/IO

Specialized vis &

analysis resources
Viz

Viz

Viz

Viz

Possible in situ visualization scenarios

Visualization could be a service in this system (tightly coupled)…

… or visualization could be done on a separate node located nearby dedicated to

visualization/analysis/IO/etc. (loosely coupled)

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

Physics #1

Physics #2

Physics #n
…

Services Viz

…

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

One of many

nodes dedicated
to vis/analysis/IO

Accelerator, similar

to HW on rest of
exascale machine

(e.g. GPU)

… or maybe this is

a high memory
quad-core running

Linux!

Specialized vis &

analysis resources

… or maybe the data

is reduced and sent to
dedicated resources

off machine!

… And likely many more configurations

Viz

Viz

Viz

Viz

We will possibly need to run on:

-!The accelerator in a lightweight way
-!The accelerator in a heavyweight way

-!A vis cluster (?)

We don’t know what the best technique

will be for this machine.
And it might be situation dependent.

Reducing data to results (e.g. pixels
or numbers) can be hard.

!! Must to reduce data every step of the way.

!!Example: contour + normals + render

"! Important that you have less data in pixels than you had

in cells. (*)

"!Could contouring and sending triangles be a better

alternative?

!!Easier example: synthetic diagnostics

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

Physics #1

Physics #2

Physics #n
…

Services

One of many

nodes dedicated
to vis/analysis/IO Viz

Viz

Viz

Viz

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!!Pup #2: Programming Languages

!! Under-represented topics

!! Conclusions

Angry Pup #2: Programming Language

!! VTK: enables the community to develop diverse
algorithms for diverse execution models for diverse
data models

!! Important benefit: “write once, use many”

!!Substantial investment

!! We need something like this for exascale.

!!Will also be a substantial investment

!! Must be:

!!Lightweight

!!Efficient

!!Able to run in a many core environment

OK, what language is this in?

OpenCL? DSL?
… not even clear how to start

Message-passing remains important at
the exascale, but we lose its universality

Pax MPI

(1994 - 2010)

MPI will be

combined with

other
paradigms

within a shared

memory node

(OpenMP,

OpenCL,
CUDA, etc.)

Codes will not

be hardware-

universal
again, until a

lengthy

evolutionary

period passes

c/o David Keyes, KAUST

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!!Pup #3: Memory Footprint

!! Under-represented topics

!! Conclusions

Memory efficiency

!! 64 PB of memory for 1 billion cores means 64MB
per core

!! (May be 10 billion cores and 6.4MB per core)

!! Memory will be the 2nd most precious resource on
the machine.

!!There won’t be a lot left over for visualization and

analysis.

!! Zero copy in situ is an obvious start

!!Templates? Virtual functions?

!! Ensure fixed limits for memory footprints
(Streaming?)

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!!Pup #4: In Situ-Fueled Exploration

!! Under-represented topics

!! Conclusions

Do we have our use cases covered?

!! Three primary use cases:

!!Exploration

!!Confirmation

!!Communication

Examples:
Scientific discovery
Debugging

Examples:
Data analysis
Images / movies
Comparison

Examples:
Data analysis
Images / movies

?

In situ

Can we do exploration in situ?

Having a human in the loop may prove

to be too inefficient.
(This is a very expensive resource to

hold hostage.)

Enabling exploration via in situ
processing

!! Requirement: must transform the data in a way that

both reduces and enables meaningful exploration.

!! Subsetting

!! Exemplar subsetting approach: query-driven visualization

"! User applies repeated queries to better understand data

"! New model: produce set of subsets in situ, explore it with
postprocessing

!! Multi-resolution

!!Old model: user looks at coarse data, but can dive down to
original data.

!!New model: branches of the multi-res tree are pruned if
they are very similar. (compression!)

Enabling exploration via in situ
processing

!! Requirement: must transform the data in a way that

both reduces and enables meaningful exploration.

!! Subsetting

!! Exemplar subsetting approach: query-driven visualization

"! User applies repeated queries to better understand data

"! New model: produce set of subsets in situ, explore it with
postprocessing

!! Multi-resolution

!!Old model: user looks at coarse data, but can dive down to
original data.

!!New model: branches of the multi-res tree are pruned if
they are very similar. (compression!)

It is not clear what the best way is to

use in situ processing to enable
exploration with post-processing …

it is only clear that we need to do it.

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

Under-represented topics in this talk.

!! Two topics we will discuss later:

!!We will have quintillions of data points … how do we
meaningfully represent that with millions of pixels?

!!Data is going to be different at the exascale: ensembles,
multi-physics, etc.

"!The outputs of visualization software will be different.

!! Accelerators on exascale machine are likely not to have
cache coherency

!!How well do our algorithms work in a GPU-type setting?

!!We have a huge investment in CPU-SW. What now?

!! What do we have to do to support resiliency issue?

Outline

!! The Terascale Strategy

!! The I/O Wolf & Petascale Visualization

!! An Overview of the Exascale Machine

!! The Data Movement Wolf and Its 4 Angry Pups

!! Under-represented topics

!! Conclusions

It is funny how this happens…

!! All petascale processing techniques still are very
relevant at the exascale.

!! In situ: data movement wolf

!!Out-of-core: Pup #3: memory efficiency

!!Multi-res: Pup #4: exploration

!!Data subsetting: Pup #4: exploration

!!Pure parallelism: experiences at massive concurrency

will be critical

Exascale Summary

!! We are unusual: we are data consumers, not data
producers, and the exascale machine is being
designed for data producers

!! So the exascale machine will almost certainly lead
to a paradigm shift in the way visualization
programs process data.

!!Where to process data and what data to move will be
a central issue.

Exascale Summary

!! In addition to the I/O “wolf”, we will now have to

deal with a data movement “wolf”, plus its 4 pups:

1)! In Situ System

2)! Programming Language

3)! Memory Efficiency

4)! In Situ-Fueled Exploration

Three Strategies for Three Epochs

terascale petascale exascale

In situ

Multi-resolution

Pure parallelism

Out-of-core

Data subsetting

Summary

!! There are three distinct strategies for the terascale,
petascale, and exascale supercomputing

!!Visualization researchers are interested in different
processing techniques depending on what scale of
supercomputing they are planning for.

!! Lecture #2: can we write visualization software that
will work in lots of different processing
environments?

Data Flow Networks

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Outline

!! Data flow networks overview

!! Data flow networks implementations

!!VTK

!!OpenDX

Outline

!! Data flow networks overview

!! Data flow networks implementations

!!VTK

!!OpenDX

Data flow networks 101

!! Work is performed by a pipeline

!! A pipeline consists of data

objects and components (sources,
filters, and sinks)

File Reader

(Source)

Slice Filter

Contour

Filter

Renderer

(Sink)

!! Data objects: contain data

"! Typically “problem-sized” data.

!! Sources: source of data

"! Examples: file readers, geometry generators

!! Sinks: sinks for data

"! Examples: file writers, rendering modules

!! Filters: both sink and source

"! Purpose: manipulate input data object to
create new output

5

Data flow networks 101

!! Work is performed by a pipeline

!! A pipeline consists of data

objects and components (sources,
filters, and sinks)

File Reader

(Source)

Slice Filter

Contour

Filter

Renderer

(Sink) U
p
d
a
te

E
x
e
c
u
te

#! Pipeline execution begins
with a “pull”, which starts
Update phase

#! Data flows from component
to component during the
Execute phase

Data flow networks: pluses &
minuses

!! Plusses

!! Interoperability / Flexibility

!!Extensible

!! Minuses

!!Memory efficiency

!!Performance efficiency

!!Easy to add new algorithms, but hard to extend the

data model

Data flow networks: strengths

!! Flexible usage

!!Networks can be multi-input /
multi-output

!! Interoperability of modules

!! Embarrassingly parallel
algorithms handled by base
infrastructure

!! Easy to extend

!!New derived types of filters

Abstract filter

Slice filter

Contour filter

???? filter

Inheritance

Source

Sink

Filter A Filter B

Filter C

Flow of data

Data flow networks: weaknesses

!! Execution of modules happens in stages

!!Algorithms are executed at one time

"!Cache inefficient

!!Memory footprint concerns

!! Some implementations fix the data model.

Outline

!! Data flow networks overview

!! Data flow networks implementations

!!VTK

!!OpenDX

Visualization with VTK

Content from: Erik Vidholm, Univ of Uppsula, Sweden

David Gobbi, Robarts Research Institute, London, Ontario, Canada

VTK – The Visualization ToolKit

!! Open source, freely available software for 3D
computer graphics, image processing, and
visualization

!! Managed by Kitware Inc.

!! Use C++, Tcl/Tk, Python, Java

True visualization system

!! Visualization techniques for visualizing
!!Scalar fields

!!Vector fields

!!Tensor fields

!! Polygon reduction

!! Mesh smoothing

!! Image processing

!! Your own algorithms

Additional features

!! Parallel support (message passing, multithreading)

!! Stereo support

!! Integrates easily with Motif, Qt, Tcl/Tk, Python/Tk,
X11, Windows, ...

!! Event handling

!! 3D widgets

3D graphics

!! Surface rendering

!! Volume rendering

!!Ray casting

!!Texture mapping (2D)

!!Volume pro support

!! Lights and cameras

!! Textures

!! Save render window to .png, .jpg, ...
(useful for movie creation)

Objects

!! Data objects

!!Next slide

!! Process objects

!!Source objects (vtkReader, vtkSphereSource)

!!Filter objects (vtkContourFilter)

!!Mapper objects (vtkPolyDataMapper)

Data model

Cell Data & Point Data

Visualization continued

!! Scalar algorithms

!! Iso-contouring

!!Color mapping

!! Vector algorithms

!!Hedgehogs

!!Streamlines / streamtubes

!! Tensor algorithms

!!Tensor ellipsoids

The visualization pipeline

DATA

FILTER MAPPING

DISPLAY

Visualization algorithms

Interactive feedback

Imaging

!! Supports streaming => huge datasets

!! vtkImageToImageFilter

!!Diffusion

!!High-pass / Low-pass (Fourier)

!!Convolution

!!Gradient (magnitude)

!!Distance map

!!Morphology

!!Skeletons

Summary +

!! Free and open source

!! Create graphics/visualization applications fairly fast

!! Object oriented - easy to derive new classes

!! Build applications using "interpretive" languages Tcl,
Python, and Java

!! Many (state of the art) algorithms

!! Heavily tested in real-world applications

!! Large user base provides decent support
!! Commercial support and consulting available

Summary -

!! Not a super-fast graphics engine due to portability
and C++ dynamic binding – you need a decent
workstation

!! Very large class hierarchy => learning threshold
might be steep

!! Many subtleties in usage
!! Pipeline execution model

!! Memory management

Example – Vector field visualization

The visualization pipeline - example

vtkStructuredPointsReader

”hydrogen.vtk”

vtkMarchingCubes

vtkPolyDataMapper

vtkActor

vtkRenderer

vtkRenderWindow
vtkRenderWindowInteractor

Python example: visualization
hydrogen molecule

File: isosurface.py

import vtk

image reader
reader = vtk.vtkStructuredPointsReader()

reader.SetFileName("hydrogen.vtk")

reader.Update()

bounding box
outline = vtk.vtkOutlineFilter()

outline.SetInput(reader.GetOutput())

outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInput(outline.GetOutput())

outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)

outlineActor.GetProperty().SetColor(0.0,0.0,1.0)

Must call
update to
read!

Pipeline
connections

Example continued
iso surface
isosurface = vtk.vtkContourFilter()
isosurface.SetInput(reader.GetOutput())
isosurface.SetValue(0, .2)
isosurfaceMapper = vtk.vtkPolyDataMapper()
isosurfaceMapper.SetInput(isosurface.GetOutput())
isosurfaceMapper.SetColorModeToMapScalars()
isosurfaceActor = vtk.vtkActor()
isosurfaceActor.SetMapper(isosurfaceMapper)

slice plane
plane = vtk.vtkImageDataGeometryFilter()
plane.SetInput(reader.GetOutput())
planeMapper = vtk.vtkPolyDataMapper()
planeMapper.SetInput(plane.GetOutput())
planeActor = vtk.vtkActor()
planeActor.SetMapper(planeMapper)

vtkContourFilter
chooses the
appropriate
method for the
data set

Example continued

a colorbar
scalarBar = vtk.vtkScalarBarActor()
scalarBar.SetTitle("Iso value")

renderer and render window
ren = vtk.vtkRenderer()
ren.SetBackground(.8, .8, .8)
renWin = vtk.vtkRenderWindow()
renWin.SetSize(400, 400)
renWin.AddRenderer(ren)

Creates a
legend
from the
data and a
lookup
table

Example continued

render window interactor

iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

add the actors

ren.AddActor(outlineActor)

ren.AddActor(isosurfaceActor)
ren.AddActor(planeActor)

ren.AddActor(scalarBar)

this causes the pipeline to ”execute”

renWin.Render()

initialize and start the interactor
iren.Initialize()

iren.Start()

The renWin.Render()

calls Update() on the
renderer, which calls

Update() for all its
actors, which calls…

The

RenderWindowInteractor
contains functions for

mouse/keyboard
interaction

The VTK file format

vtk DataFile Version 2.0
Hydrogen orbital
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 64 64 64
ORIGIN 32.5 32.5 32.5
SPACING 1.0 1.0 1.0
POINT_DATA 262144

SCALARS probability float
LOOKUP_TABLE default
0.0 0.0 0.01 0.01 …..

- Many modules to
write VTK files

VTK and C++

!! Build with CMake and your favorite compiler

!! CMake generates makefiles or project files for your
environment

!! Use the resulting file(s) to build your executable

!! With C++ you have full control and can derive own

classes, but you need to write many lines of code…

VTK resources

!! ww.vtk.org
!!Download (source and binaries)
!!Documentation
!!Mailing lists
!! Links
!! FAQ, Search

!! ww.kitware.com
!!VTK Textbook
!!VTK User’s guide
!!Mastering CMake

Outline

!! Data flow networks overview

!! Data flow networks implementations

!!VTK

!!OpenDX $ courtesy Greg Abram!!

OpenDX History

!! 1988 Work begins at IBM TJ Watson Research Center to develop a
data-parallel “Visualization Supercomputer”

!! Goals:

"! Extreme performance

"! Accessibility to non-sophisticated users

!! Technology:

"! Hardware: 32-way cache-coherent SMP NUMA system based on Intel
i860 processors – the IBM PVS

"! Software: Scientific visualization environment based on a data-flow-
like execution model, a visual programming paradigm and a
comprehensive data model

!! 1991 IBM Visualization Data Explorer software released on wide
range of workstation-level platforms including SMP support

!! 1996 Open-sourced as OpenDX

Architecture

!! Client / Server: GUI is client, Executive is server, communication via
sockets and X protocol

!! GUI:

!! Presents “data flow” programming environment to application programmer;

!! Presents application GUI (e.g. control panels, image windows) to application
user;

!! Sends program “network” to Executive and receives images for display

!! Executive:

!! Implements an object-oriented data model for the representation of data;

!! Manages cache of previously computed results;

!! Analyzes networks to determine what needs to be done for a given
execution based on network connectivity and availability of prior results; and

!! Calls module code to perform required computation

General Directed Acyclic Graphs
Enables user to compute multiple inputs to a
module: here, the vector field and starting point set
inputs of streamline module

1.! Import data

2.! compute the 0-contour of a scalar field in an

arbitrary plane

3.! Sample contours for streamline starting points

4.! Compute gradient of scalar field

5.! Compute streamlines in gradient field

6.! Color and tube-ify contours

7.! Show streamlines, contours from 2 different

viewpoints

1

2

4

5

3

6

7

Programming- vs. Application-Interface

!! Interactors corresponding to network inputs are
placed into control panels

!! Users need never see visual programming

environment

VPE Programming UI

Application UI

Data Caching

!! Module results are cached for re-use in interactive
and iterative executions of network

!! Module are pure functions of their inputs
!!No side-effects

!!Modules run completely; no partial execution of modules
based on downstream factors

!! Executive maintains object cache:
!!Cache tags formed from producing module name and the

cache tags of the producing module’s inputs

!! Executive can determine whether a result is available
without calling the module code

“Data Flow” By Network Analysis

1.! Identify data sinks – e.g. render windows, exporters

2.! Traverse graph upward from sinks to identify
connected modules

3.! Traverse resulting subgraph downward from
connected inputs to assign cache tags

4.! Traverse upward to find sub-subgraph containing
uncached results

5.! Traverse sub-subgraph downward to perform

required computations

Interaction causes re-execution

•! User decides streamlines are too
sparse, uses the interactor in the
control panel to increase the number
of samples to be taken in the iso-
contours

•! Poor-man’s stream-surfaces?

Executive determines dependent
modules and runs them

OpenDX Summary

!! Visualization programs are generalized DAG
networks rather than pipelines

!!Aimed at developing “visualization applications”,
rather than visualizations themselves

!!Some programs consisted of hundreds or thousands of
modules

!! Control flow is determined by program analysis
rather than true push- or pull-model dataflow

!! Extensions to execution model support conditional
execution and looping

Data flow networks: summary

!! Data flow networks is a design that:

!!allows for users to explore data in dynamic and
unforeseen ways

!! is highly extensible

!! is very popular in visualization software

!!Tomorrow: can be used with many processing techniques

MPI Overview

Hank Childs, Lawrence Berkeley Lab & UC Davis June 14, 2011

Parallel Computer Memory
Architectures

!! Shared Memory

!!Uniform Memory Access (UMA)

!!Non-Uniform Memory Access (NUMA)

C/o Amit Kumar, Old Dominion

Parallel Computer Memory
Architectures …contd.

!! Distributed Memory

C/o Amit Kumar, Old Dominion

Parallel Computer Memory
Architectures …contd.

!! Hybrid Distributed-Shared Memory

!!The largest and fastest computers in the world today

employ both shared and distributed memory

architectures.

C/o Amit Kumar, Old Dominion

Comparison of Shared and Distributed Memory Architectures

Architecture UMA NUMA Distributed

Communications

MPI

Threads

OpenMP
shmem

MPI

Threads

OpenMP
Shmem

MPI (or hybrid)

Scalability
to 10s of

processors
to 100s of processors to 100000s of processors

Draw Backs
Memory-CPU

bandwidth

Memory-CPU

bandwidth Non-

uniform access
times

System administration

Programming is hard to develop and

maintain

C/o Amit Kumar, Old Dominion

What is MPI?

!! MPI = message passing interface

!! De facto standard for programming distributed
memory machines

!! API that enables coordination of parallel programs
via message passing (send & receive)

!! Enables portability. Programmers make MPI calls to
coordinate processing, MPI translates to network
calls.

Historical Development of MPI

!! 1980-early 1990: distributed memory parallel
computing application develops and calls for a standard

!! 1992: MPI Forum established

!! 1993: draft MPI standard presented at SC’93

!! May, 1994: MPI-1 final version released, 115
routines defined

!! 1996; MPI-2 finalized, which picked up “difficult”
issues that MPI-1 intentionally left off.

!! Most vendors have full implementation of MPI-1,

but partial implementation of MPI-2
C/o David Chen, IBM

Using MPI

!! Two ways to compile:

!!Manually tell compiler library location

"!#include <mpi.h>

"!gcc -I/path/to/mpi/include file.c –L/path/to/mpi/lib -lmpi

!!Special compiler that manages environment

"!mpicc file.c

!! Special way to invoke MPI programs:

!!mpirun –np 8 my_program

!!qsub / aprun

!!Many more…

Sustainable High Performance
Computing
HoS : MPI

Mauro Bianco
Texas A&M University

Thierry Carrard
CEA / DIF

Outline

� Opening questions / remarks
� Examples fast forward
� Examples fast forward

– Hellow World
– String Search
– Pi computation
– Matrix multiply

� Getting started
� Exercises
� Questions

Opening questions / remarks

– Questions about the morning course

– Remarks / special requests for this HoS

Examples fast forward

– Hello World
� Initialization of the runtime
� Ensure everyone is ready to compile and execute

– String search
� Divide and conquer

– Pi computation
� Scalable problem, no communication bottleneck

– Matrix multiply
� A first practical numerical problem

Getting started: MPI

• #include <mpi.h>

• The first line of main(argc, argv) must be
– MPI_Init(&argc, &argv);

• MPI_COMM_WORLDis the initial communicator

• Important initial information:
– int id, nprocs;

– MPI_Comm_rank(MPI_COMM_WORLD, &id);

– MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

• Last Statement is
• MPI_Finalize()

MPI Execution

• Different processes each of them with an
integer ID from 0 to P-1

• Communicate through send/receive
• Beware of low level protocol implementation

• This can cause a deadlock depending on
size of data

SEND(data) SEND(data)

RECV(data) RECV(data)

MPI send

MPI_Send(BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR); /* id space */

MPI Send is a blocking operation: when function
returns BUFFhas been sent to destination and can
be reused.

MPI Receive

MPI_Recv(BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

&status); /* info about data */

MPI Recv is a blocking operation: when function
returns BUFFcontains payload data from a
message matching TAG.

MPI Isend

MPI_Isend(BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

REQUEST); /* to check status */

MPI Isend is a NON blocking operation: when
function returns BUFFmay be still unsent and can
NOT be safely reused.

MPI Ireceive

MPI_Irecv(BUFF, /* address of storage */

SIZE, /* elements to send */

MPI_TYPE, /* type of data */

DEST, /* destination process */

TAG, /* message identifier */

COMMUNICATOR, /* id space */

REQUEST); /* to check status */

MPI Irecv is a NON blocking operation: when
function returns BUFFmay not contain payload
data from a message matching TAG.

MPI Test&Wait

• Used to check status of non blocking
operations like MPI_Isend and MPI_Irecv

• MPI_Wait(&request, &status);

– Returns when request is completed
– status variable as in MPI_Recv

• MPI_Test(&request, &flag,
&status);

– int flag matches true if request succeeded

MPI Others

• MPI_Barrier(COMMUNICATOR)
– All processes in COMMUNICATOR must reach barrier before

proceeding
• MPI_Reduce (&var, &res, size, MPI_TYPE,

MPI_OP, proc_id, MPI_COMMUNICATOR);
− var is the input value in each processor
− res is the variable containing the result in proc_id processor
− size is the size of the buffer
− MPI_OP identify the operation (e.g., MPI_SUM)

• MPI_Bcast(BUF, SIZE, TYPE, ROOT_ID, COMM)
– Broadcast the content of BUFfrom ROOT_IDto all COMM

Compiling MPI

� mpiCC is a front end to gcc compiler
� Same options as gcc apply to mpiCC

� To run an MPI program
– mpirun –nprocs <n> programname

– mpirun –nprocs <n> -machinefile
-file progname

– machinefile containes the names of
computing nodes to use

Hello world

• Write an “Hello world I’m process # of #
processes” in MPI

Hello world: MPI

#include <cstdio>
#include <mpi.h>

int main(int argc, char** argv)
{

int id, nprocs;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

printf("Hello from process %u of %u\n", id, nprocs);

MPI_Finalize();
return 0;

}

String Matching

• Count the number of occurrences of a
pattern in a (random) text
– MPI
– TBB
– OpenMP

• In MPI text is distributed across the
processes and the pattern is known to
everyone

MPI: String Matching 1/4

MPI_Init(&argc, &argv);
int N=atoi(argv[1]);
int P;
MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

std::vector<char> V(N);
//Initialize data.
int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);

std::for_each(V.begin(), V.end(), init(pid));

std::string S(argv[2]);
int M=S.length();

•

MPI: String Matching 2/4
//Count matches on local data.
int cnt=0;
for (int i=0; i <= N-M+1; ++i) {

bool match = true;
for (int j=0; j < M; ++j) {

if (V[i+j] != S[j])
match = false;

}
if (match) ++cnt;

}

MPI: String Matching 3/4
if (pid>0) {

MPI_Send((&V[0]), M-1, MPI_CHAR, pid-1, 1,
MPI_COMM_WORLD);

}
if (pid<P-1) {

std::vector<char> BUFF(2*(M-1));
std::copy(V.begin()+N-M+1, V.end(), BUFF.begin());
MPI_Status status;
MPI_Recv(&BUFF[M-1], M-1, MPI_CHAR, pid+1, 1,

MPI_COMM_WORLD, &status);
for (int i=0; i <= M-1; ++i) {

bool match=true;
for (int j=0; j < M; ++j) {

if (BUFF[i+j]!=S[j])
match=false;

}
if (match) ++cnt;

}
}

•

MPI: String Matching 4/4
double match_time = match_timer.stop();

reduce_timer.start();

int res;
MPI_Reduce (&cnt, &res, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

MPI_Finalize();
if (pid==0) {

printf("RESULT ====> %d\n",res);
printf("Overall %f Initialize %f Match %f Reduce

%f\n",
overall_time, init_time, match_time,

reduce_time);
}

return 0;

PI Example

• Compute Pi with a Monte Carlo simulation
• Generate N random points in the unit square
• Count how many falls in the unit circle: M
• 4* M / N = Pi

MPI: Pi 1/3

MPI_Init(&argc, &argv);

int N=atoi(argv[1]);
int P;

MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

int pid;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);

srand48(pid);

MPI: Pi 2/3
int cnt(0);

for (int i=0; i<N; ++i) {
double xcoord = drand48();
double ycoord = drand48();

double dist = std::sqrt(std::pow(xcoord, 2.0) +
std::pow(ycoord, 2.0));

if (dist < 1.0)
++cnt;

}
//Collect the number of matches from all processes.
int res;
MPI_Reduce (&cnt, &res, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

if (pid==0) {
double pi = 4*(res/(double)(N*P));
printf("RESULT ====> %f\n",pi);

}

Matrix Multiplication

• Implement a dense matrix multiplication
algorithm in
− TBB

− OpenMP
− MPI

• C += A*B, A is NxL, B is LxM, C is NxM
• Input are three integers: N,L,M
• Initialize matrices and perform

computation checking correctness

Basic sequential loop

void SMM(float A[][SIZEZ],

float B[][SIZEZ],

float C[][SIZEZ],

size_t Arows, size_t Acols , size_t Bcols) {

for (size_t i=0; i<Arows; ++i) {

for (size_t j=0; j<Bcols; ++j) {

for (size_t k=0; k<Acols; ++k) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

} TRY SWAPPING THE TWO INNER
LOOPS AND MEASURE TIME – with
optimizations on

MPI version

• Each Processor holds N/P rows of A and
C, and M/P columns of B

• Eash processor computes A*B (on its
portion)

• Then sends B to the previous *or next)
processor

• Repeat for P times
• Assume P divides N, L, and M

MPI matrix multiplication
MPI_Init(&argc, &argv);
const size_t Arows=SIZEZ, Acols=SIZEZ, Bcols=SIZEZ;
int P; MPI_Comm_size(MPI_COMM_WORLD, &P);
int pid; MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Status status;
MPI_Request r;
// Each processor has Arows/P rows of A and all of B, C

stored like A
float *A = new float[SIZEZ*SIZEZ/P];
float *B = new float[SIZEZ*SIZEZ/P];
float *tmp = new float[SIZEZ*SIZEZ/P];
float *C = new float[SIZEZ*SIZEZ/P];

CreateData(A, B, pid, Arows/P, Acols, Bcols/P);
InitC(C0,Arows,Bcols/P);

Parallel visualization

Hank Childs, Lawrence Berkeley Lab & UC Davis June 14, 2011

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT

!! Performance study

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT

!! Performance study

Data Parallel Pipelines

!! Duplicate pipelines run independently on
different partitions of data.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Duplicate pipelines run independently on
different partitions of data.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Some operations will work regardless.

!!Example: Clipping.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Some operations will work regardless.

!!Example: Clipping.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Some operations will work regardless.

!!Example: Clipping.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Some operations will have problems.

!!Example: External Faces

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Some operations will have problems.

!!Example: External Faces

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Ghost cells can solve most of these problems.

Slide courtesy of Ken Moreland, Sandia Lab

Data Parallel Pipelines

!! Ghost cells can solve most of these problems.

Slide courtesy of Ken Moreland, Sandia Lab

Parallelization covers data input, data processing, and

rendering.

!! Identical data flow networks
on each processor.

!!Networks differentiated by
portion of data they operate
on.

!!“Scattered/gather”

"!No distribution (i.e. scatter),

because scatter is done with

choice of what data to read.

"!Gather: done when rendering

P1! P2! P3!P0!I/O!

Parallel!

Simulation!

Code!
P0!

P1!

P3!

P2!

Data Input

Parallelized!

Server!

Proc 0 Proc 1 Proc 2

Data

Processing

Rendering

Parallel rendering (basic “sort last” version)

!! Parallel rendering

!!Every processor renders
local geometry

!!Z-buffer is used to
compare depth of images

!!Communication between
processor for final image

!! Harder:

!!Shadows, transparency,
ray-casting

!! More on this topic later…

Proc. 0’s image

Proc. 1’s image

Final composited

image (done w/ z-
buffer)

Scalable rendering

The standard architecture for data flow network-based tools.

!! Observations:

!!Good for remote visualization

!! Leverages available resources

!! Scales well

!!No need to move data

remote machine

Parallel vis resources

User

data

localhost

Graphics

Hardware
UI

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT

!! Performance study

Data flow networks: observations

!! Source for managing flow of data is small and in one
place

!! Majority of code investment is in algorithms (derived
types of filters), not in base classes (which manage
data flow).

Algorithms don’t care about data

processing paradigm … they only care
about operating on inputs and outputs.

Example filter: contouring

Contour algorithm

Contour filter

Mesh input Surface/line output

Data Reader Contour Filter Rendering

{

Example filter: contouring
 with data subsetting

Contour algorithm

Contour filter

Mesh input Surface/line output

Data Reader Contour Filter Rendering

{

Communicate

with executive to
discard domains

Example filter: contouring
 with out-of-core

Contour algorithm

Contour filter

Mesh input Surface/line output

Data Reader Contour Filter Rendering

{

1 2 3

4 5 6

7 8 9

10 11 12

1 2 3

4 5 6

7 8 9

10 11 12

Algorithm called

12 times

Example filter: contouring
 with multi-resolution techniques

Contour algorithm

Contour filter

Mesh input Surface/line output

Data Reader Contour Filter Rendering

{

Simulation code

Example filter: contouring
 with in situ

Contour algorithm

Contour filter

Mesh input Surface/line output

Data Reader Contour Filter Rendering

{
X

How Petascale Changes the Rules

!! We can’t use pure parallelism alone any more

!! We will need many techniques to work in many
processing paradigms

!! Data flow networks are a good fit: write algorithm
once, use anywhere

!!Only core infrastructure has to worry about the
processing paradigm

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT

!! Performance study

Contracts are an extension to the
standard data flow network design.

!! Work is performed by a pipeline

!! A pipeline consists of data

objects and components (sources,
filters, and sinks)

File Reader

(Source)

Slice Filter

Contour

Filter

Renderer

(Sink)

V0

V1

V2

Exec

U
p
d
a
te

E
x
e
c
u
te

Data Flow Networks “101”:

Extension: #! Contracts are coupled with
the Update phase

#! Pipeline execution begins
with a “pull”, which starts
Update phase

#! Data flows from component
to component during the
Execute phase

26

Initial observations about contracts.

!! A contract is simply a data structure

!!The members of the data structure reflect the optimizations

!! Optimizations are adaptively applied based on the final contract

!! Each component describes its impact on the pipeline

!!Allows for effective management of hundreds of components

!!Allows for new, unforeseen components to be added

!! Combining contracts with the Update phase

$!seamlessly integrated into data flow networks

$every component has a chance to modify the contract

27

Why are contracts important?

•! Contracts are important for managing which
optimizations can be utilized in a richly featured
system

•! We will look at the impact of these optimizations
to better understand their importance.

Operating on Optimal Subset of
Data

…

Slice Filter

V(I)

…

V(I+1)

Filter

(base class)

(inheritance)

Slice Filter
Hundreds

of others

Contract *!

SliceFilter::ModifyContract!

 (Contract *V(I))!

{!

 ...!

 return V(I+1);!

}!

Operating on Optimal Subset of
Data

…

Slice Filter

V(I)

…

V(I+1)

Filter

(base class)

(inheritance)

Slice Filter
Hundreds

of others

Contract *!

SliceFilter::ModifyContract!

 (Contract *V(I))!

{!

 ...!

 return V(I+1);!

}!

1)! Get meta-data

2)! Determine domains

that intersect slice
3)! Restrict list of

domains to process

in V(I+1)

Operating on Optimal Subset of
Data

…

Slice Filter

V(I)

…

V(I+1)

1)! Get meta-data

2)! Determine domains

that intersect slice
3)! Restrict list of

domains to process

in V(I+1)
D3 D2 D1 D0

D3 D2 D1 D0

The contract-based system provides
high flexibility for this optimization.

…

Spherical

Slice Filter

V(I)

…

V(I+1)

A new, plugin filter can use

this optimization without any
modification to system

…

Slice Filter

V(J)

…

V(J+1)

…

Contour

 Filter

V(I+1)

V(I)

…

…

Multiple filters can use

the same optimizations

32

We studied performance using a
simulation of a Rayleigh-Taylor
Instability.

!! RTI: heavy and light fluids mixing

!!1.5B elements

!!729 domains

!! LLNL’s thunder

!!Top 500’s #7

(We only got a little bit of it)

!!1.4GHz Intel Itanium2

33

We studied performance using a
simulation of a Rayleigh-Taylor
Instability.

!! RTI: heavy and light fluids mixing

!!1.5B elements

!!729 domains

!! LLNL’s thunder

!!Top 500’s #7

(We only got a little bit of it)

!!1.4GHz Intel Itanium2

The techniques shown are not new

The performance increase motivates the

importance of optimizations

This, in turn, motivates the importance of contracts

34

Processing only the necessary domains
is a lucrative optimization.

Algorithm" Processors" Without
Contracts"

With
Contracts"

Speedup"

Contouring

(early)"
32" 41.1s" 5.8s" 7.1X"

Contouring

(late)"
32" 185.0s" 97.2s" 1.9X"

Slicing" 32" 25.3s" 3.2s" 7.9X"

35

What is the right technique for distributing
domains across processors?

!! Two ways:

!!Statically: make assignments before Execute phase

!!Dynamically: adaptively during Execute phase

!! Performance:

!!Static: good chance of load imbalance

"!As fast as slowest processor

!!Dynamic: adaptively balancing load

"!Obtains near optimal parallel efficiency

!! Communication:

!!Static: collective communication okay

!!Dynamic: no collective communication

36

Contracts steer what load balancing
technique we use.
!! What load balancing technique should we use?

!! If we need collective communication $ static

!! Otherwise, we want performance $ dynamic

!! Contracts enable this

!!During Update phase:

"!Every filter can modify the contract to state whether or not it

needs collective communication

!!Before Execute phase:

"!Executive examines contract and decides which load balancing
technique to use.

37

Employing dynamic load balancing
is a lucrative optimization.

Algorithm*"
Processors" Static

Load
Balancing"

Dynamic
Load

Balancing"

Speedup"

Slicing" 32" 3.2s" 4.0s" 0.8X"

Contouring" 32" 97.2s" 65.1s" 1.5X"

Thresholding" 64" 181.3s" 64.1s" 2.8X"

Clipping" 64" 59.0s" 30.7s" 1.9X"

* = All of these operations

have no collective

communication

38

Artifacts occur along the
boundaries of domains.

!! Looking at external faces

!! Faces external to a domain can be
internal to the data set

$ many extra, unneeded faces

$ wrong picture with transparency

39

Artifacts occur along the
boundaries of domains.

!! Looking at external faces

!! Faces external to a domain can be
internal to the data set

$ many extra, unneeded faces

$ wrong picture with transparency

Solution: mark

unwanted faces

as “ghost”

40

Artifacts occur along the
boundaries of domains.

#! Interpolation

•! Inconsistent values at

nodes along boundary

$ broken contour

surfaces

41

Artifacts occur along the
boundaries of domains.

#! Interpolation

•! Inconsistent values at

nodes along boundary

$ broken contour

surfaces Solution: make

redundant layer of

“ghost” elements

42

Ghost data fixes artifacts
along domain boundaries.

!! Solution: generate ghost data on the fly

!! Through contracts, system determines necessary type
of ghost data

!! There are different costs for ghost data:

!!Ghost faces: memory

!!Ghost elements: memory, collective communication

43

Ghost data fixes artifacts
along domain boundaries.

!! Solution: generate ghost data on the fly

!! Through contracts, system determines necessary type
of ghost data

!! There are different costs for ghost data:

!!Ghost faces: memory

!!Ghost elements: memory, collective communication

Always get the right picture,

and do it with the minimum cost

44

Contracts are a simple idea
that have a large impact.

!! Contracts:

!!Just a data structure

!!Describe what impact a
component has on the
pipeline

Name" Type" Default Value"

domains" vector<bool>" all true"

hasColl-"

Commun."

bool" false"

ghostType" enum {None,

Face, Element}"

None"

much more…" …" …"

#! Contracts enable us to avoid the following “dumb” (conservative) strategies:

•! Read all data

•! Always assume collective communication

•! Always create ghost elements

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering % courtesy Ken Moreland

!! IceT

!! Performance study

The Graphics Pipeline

Points Lines Polygons

Rendering Hardware

Geometric Processing

Translation
Lighting

Clipping

Rasterization

Polygon Filling
Interpolation

Texture Application
Hidden Surface Removal

Frame Buffer

Display

FB

FB

FB

FB

Parallel Graphics Pipelines

G R

G R

G R

G R

FB FB

FB FB

Sort Middle Parallel Rendering

G R

G R

G R

G R
S

o
rtin

g
 N

e
tw

o
rk

FB FB

FB FB

Sort First Parallel Rendering

G R

G R

G R

G R

S
o
rtin

g
 N

e
tw

o
rk

FB

Sort Last Parallel Rendering

G R

G R

G R

G R

S
o
rtin

g
 N

e
tw

o
rk

Sort-First Bottleneck

Renderer

Renderer

Renderer

Renderer

Polygon

Sorter

Polygon

Sorter

Polygon

Sorter

Polygon

Sorter

Network

Sort-Last Bottleneck

Compositio

n Network

Rendere

r

Rendere

r

Rendere

r

Rendere

r

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT % courtesy Ken Moreland!

!! Performance study

IceT: parallel rendering library

!! IceT = Image Compositing Engine for Tiles

!! Developed and maintained by Sandia Nat’l Lab.

!! Popular library, used by VisIt and ParaView

!! Used most often for non-tiled displays.

!!Heavily optimized

"! “Active pixels”

!!Employs multiple strategies based on user settings,
problem setup

!! http://icet.sandia.gov/

Image Composition Engine for
Tiles (ICE-T)

!! Render/compose individual tiles.

!! Take advantage of spatial decomposition.

!!Throw away blank images.

!!Build “virtual” composition networks.

!! Challenge: perform all compositions in parallel
and maintain good load balancing.

1

2

1

1

2

1 1

2

Example: 6 Nodes, 2 Tiles

Serial Strategy

Virtual Trees Strategy

Tile Split and Delegate Strategy

3 Images

6 Images

Assign

Processor

s 1, 2

Assign

Processor

s 3, 4, 5, 6

1
3

2

4

5

6

Tile Split and Delegate Strategy

3

4

5

6

1

2

Reduce to Single Tile Strategy

Bucketing

Using buckets to reduce number of polygons re-rendered.

Floating Viewport

Object fits within a tile, but is translated so that it straddles up to four

tiles.

Floating Viewport

Rather than render four times, render once in a viewport that completely

contains the object.

Floating Viewport

Break the image into four pieces and pad each piece to form an image

for each tile.

Active Pixel Encoding

!! Record run lengths of “active” pixels and “inactive”
pixels.

!! Throw away data for “inactive” pixels.

!! Fast encoding.

!!Three operations per pixel.

!! Free decoding. Faster depth compare.

!! Effective compression.

!!Encoded 1/5 full image at beginning.

!! Good worst case behavior.

!!Encoded image can only grow a few bytes.

Active Pixel Encoding, Worst Case

Color Data

Depth Data

Run Length

Active Inactive

Original Data

Encoded Data

Original Data

Encoded Data

Test Data Distributions

Linear

Distribution

Perfect

Separation

469 Mtri

Isosurface*

Gaussian

Distribution

*Image covered by Lawrence Livermore National Laboratories: UCRL-MI-142527 Rev 1

Experimental Results

IceT: Conclusions

!! Pluses

!! Renders extremely large sets
of polygons at fast rates.

!! Good performance on tile
displays.

!! Runs on clusters ($$$).

!! Good scalability.

!! Maintains good load
balancing with unstructured
data.

!! Minuses

!! Slow frame rates.

"! Large constant overhead.

"! Frame buffer read back a
huge bottleneck.

!! Requires multi-pass rendering.

!! Relies on spatial
decomposition for good
performance.

Outline

!! Parallel visualization basics

!! Smart techniques and data flow

!! Contracts

!! Parallel Rendering

!! IceT

!! Performance study

Pure parallelism and tomorrow’s
data

!! Research questions:

!! Is it possible/feasible to run production-quality
visual data analysis s/w on large machines and on
large data sets?
"! Are the tools we use right now ready for tomorrow’s data?

!!What obstacles/bottlenecks do we encounter at
massive data?

Experiment methodology

!! Preprocess step: generate large
data set

!! Read it

!! Contour

!! Render @ 1024x1024

!! Synthetic data:

!! Wanted to look at tomorrow’s data;
not available yet

!! Synthetic data should be reasonable
surrogate for real data. Visualization of 1 trillion

cells, visualized with VisIt
on Franklin using 16,000 cores.

Experiment methodology,
continued

!! Only used pure parallelism

!!This experiment was about testing the limits of pure
parallelism

!!Purposely did not use in situ, multi-resolution, out-of-
core, data subsetting

!! Pure parallelism is what the production visualization
tools use right now (*).

Volume rendering

!! Ran into problems with volume
rendering.

!! Problem eventually fixed, but
not in time for study

!! Runs on these big machines are
opportunistic and it’s hard to get a
second chance

!! Approximately five seconds per
render

!! Contouring exercises much of the
infrastructure (read, process,
render) Visualization of 2 trillion

cells, visualized with VisIt
on JaguarPF using 32,000 cores.

Experiment methodology, continued

!! Three basic variations

!!Vary over supercomputing environment

!!Vary over data generation

!!Vary over I/O pattern

Varying over supercomputer
environment

!! Goals:

!!Ensure results aren’t tied to a single machine.

!!Understand differences from different architectures.

!! Experiment details

!!1 trillion cells per 16,000 cores

!!10*NCores “Brick-of-float” files, gzipped

!!Upsampled data

7-10 network links failed, had to be

statically re-routed

BG/L has 850MHz clock speed

Lustre striping of 2 versus Lustre striping

of 4

Varying over data generation
pattern

!! Concern: does
upsampling produce
unrepresentatively
smooth surfaces?

!! Alternative: replication

Visualization of 1 trillion

cells, visualized with VisIt on
Franklin using 16,000 cores.

Results from data generation test

!! Test on franklin, using 16,000 cores with unzipped
data

Contouring time is the same because case

where a triangle is generated is rare.

Rendering time is different because

replicated pattern has more geometry.

Varying over I/O pattern

!! Previous tests: uncoordinated I/O, doing 10
“fread”s per core.

!! Can collective communication help?

Franklin I/O maximum: 12GB/s

Pitfalls at scale

!! Volume renderin

!! Startup time

!!Loading plugins overwhelmed file system

!!Took ~5 minutes

!!Solution #1: Read plugin information on MPI task 0 and
broadcast. (90% speedup)

!!Solution #2: static linking

"!Still need to demonstrate at scale

Pitfalls at scale #2: All to one
communication

!! Each MPI task needs to report high level information

!!Was there an error in execution for that task?

!!Data extents? Spatial Extents?

!! Previous implementation:

!!Every MPI task sends a direct message to MPI task 0.

!! New implementation (Miller, LLNL):

!!Tree communication

Pitfalls at scale #3: reproducible
results

Repeated debugging runs at scale are critical

to resolving issues like these.

Conclusions

!! Pure parallelism works, but is only as good as the
underlying I/O infrastructure

!!and the I/O future looks grim

!! Full results available in
special issue of Computer
Graphics & Applications on
Ultrascale Visualization.

Non-embarrassingly Parallel Algorithms

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Outline

!! Volume rendering

!! Particle advection

!! Connected components & line scans

Outline

!! Volume rendering

!! Particle advection

!! Connected components & line scans

4

Algorithm Studied:

Raycasting VR
!! Overview of Levoy’s method

!!For each pixel in image plane:

"!Find intersection of ray and volume

"!Sample data (RGBa) along ray,
integrate samples to compute final

image pixel color

5

Parallelizing Volume

Rendering
!! Image-space decomposition.

!!Each process works on a disjoint subset of the final image (in

parallel)

!!Processes may access source voxels more than once, will

access a given output pixel only once.

!!Great for shared memory parallelism.

!! Object-space decomposition.

!!Each process works on a disjoint subset of the input

data (in parallel).

!!Processes may access output pixels more than once.

!!Output requires image composition (ordering semantics).

Parallel volume rendering pitfalls

!! Both work-decomposition schemes suffer from load
balance issues:

!!Object-space: what if some processor’s portion of the
data set dominates the view frustum?

!! Image-space: what if some processor’s portion of the
view frustum contains a large fraction of the data set?

!! Object-space pitfall: what if the blocks can not be
ordered properly?

Volume rendering pitfalls

!! Image-space decomposition:

!!Load balance issue: what if some processor’s portion of

the view frustum contains a large fraction of the data

set?

Image (side view)

Proc 0’s pixels

Proc 1’s pixels

Proc 2’s pixels

Proc 3’s pixels

Proc 4’s pixels

Proc 5’s pixels

1M cells

1M cells

20M cells

1M cells

1M cells

1M cells

This assumes an a priori

decomposition of pixels.

Dynamic decomposition of

pixels entails an entirely

different set of problems.

Parallel volume rendering pitfalls

!! Image-space decomposition:

!!Performance issue: list of cells to consider changes

every render.

!!Solutions:

"!Go to disk?

"! (probably bad)

"!Data redistribution amongst processors?

"! Could work, but load balance issues from last slide are still in

play…

Image-space decomposition is well suited for shared memory

parallelism. Load balance becomes easy since pixels can be

dynamically assigned and every processor can access every cell.

Parallel volume rendering pitfalls

!! Object-space decomposition:

!!Load balance issue: what if some processor’s portion of

the view frustum contains a large fraction of the data

set?

P0

P1 P2 P3 P5 P4

Parallel volume rendering pitfalls

!! Object-space decomposition:

!!Load balance issue: what if some processor’s portion of

the view frustum contains a large fraction of the data

set?

P0

P1 P2 P3 P5 P4

Parallel volume rendering pitfalls

!! Object-space decomposition:

!!Applicability issue: what if there is no possible ordering

of sub-images?

P0

P1

P0

P1

OK Not OK

Hybrid Volume Rendering

!! Hybrid volume rendering:

!!Refers to mixture of object- and image-order

techniques to do volume rendering.

!!Most contemporary parallel volume rendering projects

are hybrid volume renderers:

"!Object order – divide data into disjoint chunks, each
processor works on its chunk of data.

"! Image order – parallel compositing algorithm divides work
over final image, each composites over its portion of the

final image.

"!A two-stage algorithm, heavy communication load between
stages.

Hybrid Volume Rendering

!! Hybrid volume rendering:

!!Dual partition scheme:
"! Over data

"! Over pixels

P0!

P1!

P3!

P2!

P8!
P7! P6!

P5!

P4!

P9!

P0
P0
P1

P9
P9

P1

Data must be sent to P0

Data OK Data must

be sent to P1

Reconsidering pitfalls

!! Image-space decomposition:

!!Load balance issue: what if some processor’s portion of

the view frustum contains a large fraction of the data

set?

Image (side view)

Proc 0’s pixels

Proc 1’s pixels

Proc 2’s pixels

Proc 3’s pixels

Proc 4’s pixels

Proc 5’s pixels

1M cells

1M cells

20M cells

1M cells

1M cells

1M cells

Non-issue for hybrid

parallel … all pixels have

approximately the same

amount of data.

Reconsidering pitfalls

!! Image-space decomposition:

!!Performance issue: list of cells to consider changes

every render.

!!Solutions:

"!Go to disk?

"! (probably bad)

"!Data redistribution amongst processors?

"! Could work, but load balance issues from last slide are still in

play…

Not an issue for hybrid volume rendering … cell list is the same for

every view.

Parallel volume rendering pitfalls

!! Object-space decomposition:

!!Applicability issue: what if there is no possible ordering

of sub-images?

P0

P1

P0

P1

OK Not OK
Not an issue for hybrid volume rendering … data can be ordered as it

is composited.

Parallel volume rendering pitfalls

!! Object-space decomposition:

!!Load balance issue: what if some processor’s portion of

the view frustum contains a large fraction of the data

set?

P0

P1 P2 P3 P5 P4

This one still is a problem for hybrid parallel volume rendering.

Optimization: only sample “small” cells in first phase.

!! Small-element sampling stage:

!! Parallelizes over object decomposition

!! Samples small elements, defers large
elements

!! Outputs partially populated (G, F), plus
untouched large elements

!! Communication stage

!! Large all-to-all communication to go from
object to image decomposition

!! Large-element sampling stage:

!! Parallelizes over image decomposition

!! Samples large elements, but only the portions
within portion of image-space

!! Each processor outputs fully populated (G, F)
for its portion of image space

Mesh-based input

Image output

Small-element

 sampling stage

Communication stage

Large-element

Sampling stage

Classification &

Composite

Image

Collection

Sampling

phase

Comp-

ositing
phase

19

This algorithm was demonstrated to be strongly

scalable.

!! Scaling study:

!! 100M element unstructured grid, 1024x1024 pixel image

!! Cluster of 2.4GHz Opterons, connected by InfiniBand

!! Run within real world application (VisIt)

!! Variations:

"! 3D rasterization versus Kernel-based sampling

"! Camera inside data set versus outside data set

Procs 3D Rast. /

outside

3D Rast. /

Inside

Kernel /

Outside

Kernel /

inside

25 12.0s 21.9s 12.1s 63.7s

50 5.8s 12.1s 5.8s 30.5s

100 3.0s 7.0s 3.1s 15.3s

200 1.6s 3.6s 1.3s 7.6s

400 0.9s 2.1s 0.7s 4.1s

Outline

!! Volume rendering

!! Particle advection

!!Motivating more than streamlines

!!Parallelization

!! Connected components

!! Line scans

Particle advection basics

•! Advecting particles create integral curves

•! Streamlines: display particle path

(instantaneous velocities)

•! Pathlines: display particle path (velocity
field evolves as particle moves)

“The Fish Tank”

“Simulation of the

Turbulent Flow of

Coolant in an

Advanced

Recycling Nuclear

Reactor.” Movie

credits to Childs,

Fischer, Obabko,

Pointer, and Siegel

Particles Moving Through the “Fish

Tank”

Courtesy Garth & Childs

Courtesy Garth & Childs

Courtesy Garth & Childs

Courtesy Garth & Childs

Courtesy Garth & Childs

Sets of Streamlines

!! Visualizing all integral curves…

!!… starting from a seed curve:

Stream Surface or Path Surface

Courtesy Garth

Sets of Streamlines

!! Stream surface computation:

•! Skeleton from Integral Curves + Timelines

Courtesy Garth

Sets of Streamlines

!! Stream surface computation:

•! Skeleton from Integral Curves + Timelines

•! Triangulation

Generation of Accurate Integral Surfaces in Time-Dependent Vector Fields. C. Garth, H. Krishnan, X.
Tricoche, T. Bobach, K. I. Joy. In IEEE TVCG, 14(6):1404–1411, 2007

Courtesy Garth

Sets of Streamlines

!! Visualizing all integral curves…

!!… starting from a seed curve:

Stream Surface or Path Surface

Courtesy Garth

Sets of Streamlines

!! Stream surface examples

Courtesy Garth

Courtesy Garth

Lagrangian Methods

!! Visualize manifolds of maximal stretching in a flow,

as indicated by dense particles

!! Finite-Time Lyapunov Exponent (FTLE)

Courtesy Garth

www.vacet.org

Lagrangian Methods

!! Visualize manifolds of maximal stretching in a flow,

as indicated by dense particles

!!Forward in time: indicates divergence

!!Backward in time: indicates convergence

Courtesy Garth

Outline

!! Volume rendering

!! Particle advection

!!Motivating more than streamlines

!!Parallelization

!! Connected components & line scans

Supercomputers are generating large data sets that

often require parallelized postprocessing.

217 pin reactor cooling simulation.

Nek5000 simulation on ! of Argonne BG/P.

Image credit: Paul Fischer using VisIt

1 billion element unstructured

mesh

Communication between “channels”

are a key factor in effective cooling.

Particle advection can be used to

study communication properties.

This sort of analysis requires many

particles to be statistically significant.

Place thousands of particles !
in one channel!

Observe which channels the!
 particles pass through!

Observe where particles come out !
(compare with experimental data) !

How can we parallelize

this process?

Repeat for other channels

Particle advection:

Four dimensions of complexity

Data set size

vs

Seed set distribution

vs

Seed set size

vs

Vector field complexity

Do we need parallel processing?

When? How complex?

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"

Parallelization for small data and a

large number of particles.

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization

data flow network

File!

Simulation

code

GPU-accelerated approaches

follow a variant of this model.

The key is that the data is small

enough that it can fit in memory.

This scheme is referred to as

parallelizing-over-particles.

Parallelization for small data and a

large number of particles.

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization

data flow network

File!

Simulation

code

Do we need advanced

parallelization techniques? When?

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"

!!Need to parallelize, but embarrassingly parallel
OK"

!! Large ##s of particles + large data set sizes"

Parallelization for large data with

good “distribution”.

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data

(on disk)

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization

data flow network

This scheme is referred to as

parallelizing-over-data.

Do we need advanced

parallelization techniques? When?

!! Data set size?"

!!Not enough!"

!! Large ##s of particles?"

!!Need to parallelize, but embarrassingly parallel
OK"

!! Large ##s of particles + large data set sizes"

!!Need to parallelize, simple schemes may be OK"

!! Large ##s of particles + large data set sizes +

(bad distribution OR complex vector field)"

!!Need smart algorithm for parallelization"

Parallelization with big data &

lots of seed points & bad

distribution
#! Two extremes:

•! Partition data over processors and pass
particles amongst processors

!! Parallel inefficiency!

•! Partition seed points over processors and
process necessary data for advection

!! Redundant I/O!

Notional streamline

example

P0 P0 P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2 P2 P2

P3 P3 P3 P3 P3

P4 P4 P4 P4 P4

P0

P1

P2
P3

P4

Parallelizing Over I/O Efficiency

Data Good Bad

Particles Bad Good

Parallelization with big data &

lots of seed points & bad

distribution
#! Two extremes:

•! Partition data over processors and pass
particles amongst processors

!! Parallel inefficiency!

•! Partition seed points over processors and
process necessary data for advection

!! Redundant I/O!

Notional streamline

example

P0 P0 P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2 P2 P2

P3 P3 P3 P3 P3

P4 P4 P4 P4 P4

P0

P1

P2
P3

P4

Parallelizing Over I/O Efficiency

Data Good Bad

Particles Bad Good

Parallelize

over particles

Parallelize

over data Hybrid algorithms

The master-slave algorithm is an

example of a hybrid technique.

!! “Scalable Computation of Streamlines on Very

Large Datasets”, Dave Pugmire, et al, SC09
!! Many of the following slides compliments of Dave Pugmire.

!! Algorithm adapts during runtime to avoid pitfalls of
parallelize-over-data and parallelize-over-

particles.
!! Nice property for production visualization tools.

!! Implemented inside VisIt visualization and analysis

package.

Master-Slave Hybrid Algorithm

•! Divide processors into groups of N

•! Uniformly distribute seed points to each group

Master:

-! Monitor workload
-! Make decisions to optimize resource

utilization

Slaves:

-! Respond to commands from
Master

-! Report status when work
complete

Master Process Pseudocode

Master()

{

 while (! done)

 {

 if (NewStatusFromAnySlave())

 {

 commands = DetermineMostEfficientCommand()

 for cmd in commands

 SendCommandToSlaves(cmd)

 }

 }

}

What are the possible

commands?

Commands that can be issued by master

Master Slave

Slave is given a streamline that

is contained in a block that is

already loaded

1. "Assign / Loaded Block

2.!Assign / Unloaded Block

3.!Handle OOB / Load

4.!Handle OOB / Send

OOB = out of bounds

Master Slave

Slave is given a streamline

and loads the block

Commands that can be issued by master

1.!Assign / Loaded Block

2. "Assign / Unloaded Block

3.!Handle OOB / Load

4.!Handle OOB / Send

OOB = out of bounds

Master Slave

Load

Slave is instructed to load a

block. The streamline in that

block can then be computed.

Commands that can be issued by master

1.!Assign / Loaded Block

2.!Assign / Unloaded Block

3. "Handle OOB / Load

4.!Handle OOB / Send

OOB = out of bounds

Master Slave

Send to J

Slave J

Slave is instructed to send a

streamline to another slave that

has loaded the block

Commands that can be issued by master

1.!Assign / Loaded Block

2.!Assign / Unloaded Block

3.!Handle OOB / Load

4. "Handle OOB / Send

OOB = out of bounds

Master Process Pseudocode

Master()

{

 while (! done)

 {

 if (NewStatusFromAnySlave())

 {

 commands = DetermineMostEfficientCommand()

 for cmd in commands

 SendCommandToSlaves(cmd)

 }

 }

}
* See SC 09 paper

for details

Master-slave in action

P0
P0

P1

P1
P2

P2
P3

P4

Iteration Action

0 P0 reads B0,

P3 reads B1

1 P1 passes points

to P0,
P4 passes points

to P3,
P2 reads B0

0: Read

0: Read

Notional streamline

example

1: Pass

1: Pass
1: Read

Master-slave in action

P0
P0

P1

P1
P2

P2
P3

P4

Iteration Action

0 P0 reads B0,

P3 reads B1

1 P1 passes points

to P0,
P4 passes points

to P3,
P2 reads B0

0: Read

0: Read

Notional streamline

example

1: Pass

1: Pass
1: Read

-! When to pass and when to read?

-! How to coordinate communication? Status? Efficiently?

Algorithm Test Cases

-!Core collapse supernova simulation

-!Magnetic confinement fusion simulation

-!Hydraulic flow simulation

Particles Data Hybrid

Workload distribution in supernova simulation

Parallelization by:

Colored by processor doing integration

Workload distribution in parallelize-over-

particles

Too much I/O

Workload distribution in parallelize-over-data

Starvation

Workload distribution in hybrid algorithm

Just right

Comparison of workload distribution

Astrophysics Test Case:
Total time to compute 20,000 Streamlines

S
e
c
o
n
d
s

S
e
c
o
n
d
s

Number of procs Number of procs

Uniform

Seeding

Non-uniform

Seeding

Data Part-

icles

Hybrid

Astrophysics Test Case:
Number of blocks loaded

B
lo

c
k
s
 l
o
a
d
e
d

B
lo

c
k
s
 l
o
a
d
e
d

Number of procs Number of procs

Data Part-

icles
Hybrid

Uniform

Seeding

Non-uniform

Seeding

Summary for Large Data and

Parallelization

!! The type of parallelization required will vary

based on data set size, number of seeds, seed

locations, and vector field complexity

!! Parallelization may occur via parallelization-over-

data, parallelization-over-particles, or somewhere

in between (master-slave). Hybrid algorithms have

the opportunity to de-emphasize the pitfalls of the

traditional techniques.

!! Note that I said nothing about time-varying data…

Outline

!! Volume rendering

!! Particle advection

!! Connected components & line scans

Visualizing and Analyzing Large-Scale

Turbulent Flow
!! Detect, track, classify, and

visualize features in large-scale

turbulent flow.

!! Analysis effort by Kelly Gaither

(TACC), Hank Childs (LBNL), &

more…

!! Stresses two algorithms that are

difficult in a distributed memory

parallel setting:

1.! Can we identify

connected components?

2.! Can we characterize their

shape?

VisIt calculated connected components on a 4K^3 turbulence data in parallel using TACC's Longhorn machine. 2

million components were initially identified and then the map expression was used to select only the components that

had total volume greater than 15. Data courtesy of P.K. Yeung & and Diego Donzis

Identifying connected components in

parallel is difficult.

!! Hard to do efficiently

!! Tremendous

bookkeeping problem.

!! 4 stage algorithm that

finds local connectivity

and then merges

globally.

We used shape characterization to

assist our feature tracking.

72

!! Shape characterization

metric: chord length

distribution

!!Difficult to perform efficiently

in a distributed memory

setting

P0!

P1!
P3!

P2!

Line Scan Filter

1) Choose

Lines

2) Calculate

Intersections

3) Segment

redistribution

4) Analyze

lines

5) Collect

results

Line Scan Analysis Sink

Hybrid Parallelism

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Outline

!! Overview of Hybrid Parallelism

!! Examples

!!Volume rendering

!!Streamlines

Outline

!! Overview of Hybrid Parallelism

!! Examples

!!Volume rendering

!!Streamlines

History of Parallelism

!! Mid 1970s-Early 1990s:

!! Vector machines: Cray 1 ... NEC SX

!! Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c.

!! Early 1990s-present:

!! The rise of the MPP based on the commodity microprocessor.
Cray T3D, TM CM1, CM2, CM5, etc.

!! Message Passing Interface (MPI) becomes the gold standard for
building/running parallel codes on MPPs.

!! Mid 2000s-present:

!! Rise of the multi-core CPU, GPU. AMD Opteron, Intel Nehalem,
Sony Cell BE, NVIDIA G80, etc.

!! Large supercomputers comprised of lots of multi-core CPUs.

!! Shared memory programming on a node: pthreads, OpenMP;
data parallel languages (CUDA); global shared memory
languages (UPC) and utilities (CAF).

"! Early 1990s-Early 2000s:

"! Shared memory parallelism (e.g. SGI)

Hybrid parallelism: MPI + ?

!! Hybrid-parallelism blends distributed- and shared-
memory parallelism concepts.

!!Use distributed memory techniques across nodes &
shared memory techniques within a node.

!! Distributed memory parallelism

!!MPI is the gold standard

!! Shared memory parallelism

!!Pthreads

!!OpenMP

!!CUDA / OpenCL

!!More…

Pthreads = POSIX threads

!! Pthreads: standard, portable library available with
C programming on UNIX

!! Thread = “independent stream of instructions that
can be scheduled to run by the operating system”

!! 4 major groups of subroutines in Pthreads API:

!!Thread management, mutexes, condition variables,
synchronization

!! Threads created and destroyed dynamically

!! Memory shared between the threads

!! Each thread may execute a totally different
subroutine.

OpenMP = Open Multi-Processing

!! OpenMP: shared-memory parallel programming in
C/C++/Fortran on Unix, Windows NT, and more.

!! Defined by a group of major computer hardware
and software vendors.

!! Portable, scalable model that gives shared-memory
parallel programmers a simple and flexible
interface.

!! Realized through compiler directives.

!! Follows a fork/join
model.

CUDA = Compute Unified Device
Architecture

!! Allows developers to
program NVIDIA GPUs by
giving them access to its
virtual instruction set and
memory of the parallel
computational elements.

!! Recursion-free, function-
pointer-free subset of the
C language.

OpenCL = Open Computing Language

!! Developed by Apple, AMD, IBM, Intel, and Nvidia,
and transferred to the Khronos Group.

!! Programming is similar to CUDA, although widely
regarded to be a less mature environment.

!! Capable of supporting x86, Nvidia, and ATI cards.

Hybrid Parallelism on Large,
Multi-core Platforms

!! Why hybrid parallelism?

!!MPI-only approaches for parallel visualization may not
work well in future: 100-1000 cores per node.

!!Exascale machines will likely have O(1M) nodes

!! Questions when considering hybrid parallelism:

!!Will MPI-only work?

!!Will hybrid work?

!!Are there performance gains with hybrid? Losses?

Research in Hybrid Parallelism

!! Caveats
!! Relatively new research area, not a great deal of published

work.

!! Studies focus on “solvers,” not vis/graphics.

!! State of hybrid parallel visualization: lots of work to do

!! Fundamental questions:
!!How to map algorithm onto a complex memory,

communication hierarchy?

!!What is the right balance of distributed- vs. shared-memory
parallelism? How does balance impact performance?

Research in Hybrid Parallelism

!! Conclusions of these previous works:
!!What is best? Answer: it depends.

!!Many factors influence performance/scalability:

"!Synchronization overhead.

"!Load balance (intra- and inter-node).

"!Communication overhead and patterns.

"!Memory access patterns.

"!Fixed costs of initialization.

"!Number of runtime threads.

Outline

!! Overview of Hybrid Parallelism

!! Examples

!!Volume rendering

!!Streamlines

Hybrid Parallelism for Volume Rendering
on Large, Multi-core Platforms
!! Does hybrid-parallelism work for ray casted volume

rendering at extreme concurrency? If so, how well?

!!Ask same questions the HPC folks do:

"!How to map algorithm to hybrid parallel space?

"!How does performance compare with MPI-only implementation?

!! Study:

!!Compare MPI-only, MPI+pthreads, MPI+OpenMP at 216K
concurrency

!! Results:

!!Experiment to compare performance shows favorable
characteristics of hybrid-parallel, especially at very high
concurrency.

Hybrid Parallelism Versus Hybrid
Volume Rendering

!! Hybrid volume rendering:

!!Refers to mixture of object- and image-order
techniques to do volume rendering.

"!A two-stage algorithm, heavy communication load between

stages.

!! Hybrid parallelism:

!!Refers to mixture of shared and distributed memory
approaches.

!! (We are doing both.)

Hybrid Parallel Volume Rendering

!! Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel

17

Experiment Overview

!! Thesis: hybrid-parallel will exhibit favorable
performance, resource utilization characteristics
compared to traditional approach.

!! Strong scaling study: hold problem size constant,
vary amount of resources.

!!As we increase the number of procs/cores,
each proc/core works on a smaller-sized problem.

!!Time-to-solution should drop.

18

Experiment: Platform and Source
Data

!! Platform: JaguarPF, a Cray XT5 system at ORNL

!!18,688 nodes, dual-socket, six-core AMD Opteron
(224K cores)

!! Source data:

!!Combustion simulation results, hydrogen flame (data
courtesy J. Bell, CCSE, LBNL)

!!Effective AMR resolution: 10243, flattened to 5123,

runtime upscaled to 46083 (to avoid I/O costs).

!! Target image size: 46082 image.

!!Want approx 1:1 voxels to pixels.

19

Experiment – The Unit Test
!! Raycasting time: view/data dependent

!!Execute from 10 different prescribed views:
forces with- and cross-grained memory access patterns.

!!Execute 10 times, result is average of all.

!! Compositing

!!Five different ratios of compositing PEs to rendering PEs.

!! How/what to measure?

!!Memory footprint

"! right after initialization.

"! for data blocks and halo exchange

!!Absolute runtime and scalability of raycasting and
compositing

!!All across a wide range of concurrencies.
"!Remember: we’re concerned about what happens at extreme

concurrency.

20

Absolute Runtime

!! -hybrid outperforms –only at every concurrency
level.

!!At 216K-way parallel, -hybrid is more than twice as
fast as –only.

!!Compositing times begin to dominate: communication
costs.

21

Scalability – Raycasting Phase

!! Near linear scaling since no
interprocess communication.

!! -hybrid shows sublinear
scaling due to oblong block
shape.

!! -only shows slightly better
than linear due to reduced
work caused by
perspective foreshortening.

22

Scalability – Compositing

!! How many compositors to use?

!! Previous work: 1K to 2K for 32K renderers (Peterka, 2009).

!!Our work: above ~46K renderers, 4K to 8K works better.

!! -hybrid cases always performs better: fewer messages.

23

Memory Use – Data Decomposition

!! 16GB RAM per node

!! Sets lower bound on concurrency for this problem size: 1728-way
parallel (no virtual memory!).

!! Source data (1x), gradient field (3x)

!! Want cubic decomposition.

!! 1x2x3 block configuration per socket for –only.

!! -hybrid has ~6x data per socket than –only

!! Would prefer to run study on 8-core CPUs to maintain cubic shape

24

Memory Use – MPI_Init()

!! Per PE memory:

!!About the same at 1728, over 2x at 216000.

!! Aggregate memory use:

!!About 6x at 1728, about 12x at 216000.

!!At 216000, -only requires 2GB of memory for
initialization per node!!!

25

Memory Use – Ghost Data

!! Two layers of ghost cells required for this problem:

!! One for trilinear interpolation during ray integration loop.

!! Another for computing a gradient field (central differences) for shading.

!! Hybrid approach uses fewer, but larger data blocks.

!! ~40% less memory required for ghost data (smaller surface area)

!! Reduced communication costs

26

Comparing our results to classic
hybrid parallel factors
!! Factors in hybrid parallelism performance

!! Synchronization overhead.

"! Had two MPI tasks per node, not one, to prevent work spreading across CPU.

!! Load balance (intra- and inter-node).

"! Studied extensively, comes down to communication

!! Communication overhead and patterns.

"! Hybrid implementation naturally lends itself to superior communication
pattern

!! Memory access patterns.

"! Not presented

!! Fixed costs of initialization.

"! Ghost data generation cost reduced with hybrid parallelism

"! MPI initialization cost reduced with hybrid parallelism

!! Number of runtime threads.

"! Not studied

Summary of Results

!! Absolute runtime: -hybrid twice as fast as
–only at 216K-way parallel.

!! Memory footprint: -only requires 12x more
memory for MPI initialization then –hybrid

!! Factor of 6x due to 6x more MPI PEs.

!! Additional factor of 2x at high concurrency, likely a vendor MPI
implementation (an N2 effect).

!! Communication traffic:

!! -hybrid performs 40% less communication than -only for ghost data
setup.

!! -only requires 6x the number of messages for compositing.

!! Image: 46082 image of a ~45003 dataset generated using
216,000 cores on JaguarPF in ~0.5s (not counting I/O time).

Outline

!! Overview of Hybrid Parallelism

!! Examples

!!Volume rendering

!!Streamlines

Once again, the word “hybrid” is
being used in two contexts…

!! The master-slave algorithm is a hybrid algorithm,

sharing concepts from both parallelization-over-
data and parallelization-over-seeds.

!! Hybrid parallelism involves using a mix of shared
and distributed memory techniques, e.g. MPI +
pthreads or MPI+CUDA.

!! One could think about implement a hybrid particle

advection algorithm in a hybrid parallel setting.

Streamline integration using MPI-hybrid
parallelism on a large multi-core architecture

!! Implement parallelize-over-data and parallelize-over-

particles in a hybrid parallel setting (MPI + pthreads)

!!Did not study the master-slave algorithm

!! Run series of tests on NERSC Franklin machine (Cray)

!! Compare 128 MPI tasks (non-hybrid)
 vs 32 MPI tasks / 4 cores per task (hybrid)

!! 12 test cases: large vs small # of seeds
 uniform vs non-uniform seed locations

 3 data sets

Hybrid parallelism for parallelize-over-data

•! Expected benefits:

•! Less communication and communicators

•! Should be able to avoid starvation by

sharing data within a group.

Starvation

Measuring the benefits of hybrid
parallelism for parallelize-over-data

Measuring the benefits of hybrid
parallelism for parallelize-over-data

Gantt chart for parallelize-over-
data

Hybrid parallelism for parallelize-
over-particles

•! Expected benefits:

•! Only need to read blocks once for node, instead of once

for core.

•! Larger cache allows for reduced reads

•! “Long” paths automatically shared among cores on node

Measuring the benefits of hybrid
parallelism for parallelize-over-
particles

Measuring the benefits of hybrid
parallelism for parallelize-over-
particles

Gantt chart for parallelize-over-
particles

Summary of Hybrid Parallelism
Study

!! Hybrid parallelism appears to be extremely
beneficial to particle advection.

!! Didn’t implement the master-slave algorithm

!!… but benefits shown at the spectrum extremes provide

hope that hybrid algorithms will also benefit.

Smart

Processing

Techniques

Hank Childs, Lawrence Berkeley Lab & UC Davis June 16, 2011

Selected particles (red) and volume rendering of the plasma density

Traces of the the selected particle-bunch

Selecting particles of interest

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Multi-resolution techniques use
coarse representations then refine.

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

P2!

P4!

Multi-resolution: pros and cons

!! Pros

!!Drastically reduce I/O & memory requirements

!! Cons

!! Is it meaningful to process simplified version of the
data?

!!How do we generate hierarchical representations?
What costs do they incur?

Difficult conversations in the future.

!! Multi-resolution questions we should be asking our
customers:

!!Do you understand what a multi-resolution hierarchy
should look like for your data?

!!Who do you trust to generate it?

!!Are you comfortable with your I/O routines generating
these hierarchies while they write?

!!How much overhead are you willing to tolerate on your
dumps? 33+%?

!!Willing to accept that your visualizations are not the
“real” data?

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Valerio Pascucci

University of Utah

Cache Oblivious Progressive

Methods for Regular Data

We must achieve real-time interaction with

large datasets on a wide variety of platforms

The problem

•! Large datasets of different type:

terrains, satellite images, 8GB/

timestep (2k3 grids +time).

•! Interactive rendering for

real-time data exploration.

•! Target platforms: desktop,

parallel server, cluster.

We apply three fundamental techniques to

the visualization of large simulation data

 The general approach

•! Multi-resolution geometric representation:

–! adaptive view-dependent refinement;

–! minimal geometric output for selected

 error tolerance.

•! Cache oblivious external memory data layouts:

–! exploit spatial and resolution coherency;

–! no need for complicated paging techniques.

•! Progressive processing:

–! continuously improved rendering;

–! scalability with the resources

without budgeting.

The General Infrastructure is Structured

into Three Main Components

Algorithm Design
(Progressive Processing)

Data Layout
(Cache Oblivious)

Processing Network
(Data Access Path)

General Data Layout

Grouping the data by
level of resolution

Data coherent Progressive refinement of a

hierarchical geometric data-structure

Grouping the data by

geometric proximity

General Data Layout

General Data Layout

General Data Layout

General Data Layout

General Data Layout

General Data Layout

We exploit the correlation of bin/quad/oct-trees

with the Lebesgue space-filling curves

The Lebesgue curve is also known as Z-order, Morton, …. Curve.

Special case of the general definition introduced by Guiseppe Peano in

1890.

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

!∀#∃%∃&∋()∗+,∃−−.)/∋

0)1/∋(%2/∃∋∋

3∀4)/∀%∋(∃/&∃,∋5),∋6&∗)−+1∃,.7∋8∃−∃∀,71∋93(68:∋

No compression Coefficient prioritization (VDC2)

()∗+,∃−−.)/∋)5∋−7.∃/4;7∋<∀&∀∋=.&1∋

=∀#∃%∃&−∋
•! >∀/2∋+)+?%∀,∋∗?%4≅∗∃<.∀∋5),∗∀&−∋∃∗+%)2∋=∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋

&∃71/.Β?∃−∋
–! Χ∆Ε∆∋0ΦΧΓ∋ΗΙΙΙ∋9−4%%∋.∗∀Ε∃−:ϑ∋ΚΕΕ∋96ΛΜ:ϑ∋Ν.,∀7∋9#.<∃):∋

•! ΧΟ&∃/<./Ε∋=∀#∃%∃&∋&∃71/.Β?∃−∋&)∋∗?%4≅<.∗∃/−.)/∀%ϑ∋Ε,.<<∃<∋−7.∃/4;7∋<∀&∀∋
.−∋,∃%∀4#∃%2∋−&,∀.Ε1&∋5),=∀,<∋

•! 6<#∀/&∀Ε∃−∋)5∋!∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋−&,∀&∃Ε.∃−∋5),∋−7.∃/4;7∋<∀&∀∋
./7%?<∃Π∋
–! 8∃<?7∃<∋−&),∀Ε∃∋7∀+∀7.&2∋

–! 8∃<?7∃<∋ΘΚ∋Α∀/<=.<&1∋

–! 8∃<?7∃<∋7)∗+?&∀4)/∋∀/<∋∗∃∗),2∋/∃∃<−∋∋
•! !∀#∃%∃&∋Α∀−∃<∋7)∗+,∃−−.)/∋,∃∀<.%2∋−?++),&−∋1.∃,∀,71.7∀%∋<∀&∀∋,∃+,∃−∃/&∀4)/∋

•! ()∀,−∃/∃<∋∀++,)Ο.∗∀4)/−∋./∋1.∃,∀,712∋1∀#∃∋5∃=∃,∋Ε,.<∋+)./&−∋%∃∀<./Ε∋&)∋%∃−−∋+,)7∃−−./Ε∋
∀/<∋%∃−−∋∗∃∗),2∋

–! Φ,)Ε,∃−−.#∃∋,∃;/∃∗∃/&∋
•! Ν∀&∀∋∗∀2∋Α∃∋<∃%.#∃,∃<∋=.&1∋+,)Ε,∃−−.#∃%2∋./7,∃∀−./Ε∋<∃&∀.%ϑ∋+,)#.<./Ε∋7)∀,−∃∋

∀++,)Ο.∗∀4)/−∋&1∀&∋∗∀2∋Α∃∋−∃%∃74#∃%2∋,∃;/∃<∋∀%%∋&1∃∋=∀2∋?+∋&)∋&1∃∋),.Ε./∀%∋<∀&∀∋

!∀#∃%∃&∋&,∀/−5),∗−∋./∋∀∋/?&−1∃%%∋

•! Ρ.∗.%∀,∋&)∋Σ)?,.∃,∋&,∀/−5),∗−∋∀∋!∀#∃%∃&∋&,∀/−5),∗∋∃Ο+,∃−−∃−∋∀∋−.Ε/∀%∋!∀#∃∋∀−∋
%./∃∀,∋∃Ο+∀/−.)/∋Π∋

∋=1∃,∃∋%&∋∀,∃∋,∃∀%≅#∀%?∃<∋7)∃Τ7.∃/&−ϑ∋∀/<∋(&∋∀,∃∋Α∀−.−∋5?/74)/−∋

•! Σ),∋∗∀/2∋=∀#∃%∃&∋5?/74)/−∋&1∃∋&,∀/−5),∗∋7)∃Τ7.∃/&−ϑ∋%&∋ϑ∋∀,∃∋−.∗+%2∋Ε.#∃/∋
Α2∋&1∃∋.//∃,∋+,)<?7&Π∋

•! !∀#∃%∃&∋&,∀/−5),∗−∋1∀#∃∋−∃#∃,∀%∋Υ∃2∋<.ς∃,∃/7∃−∋5,)∗∋Σ)?,.∃,∋&,∀/−5),∗−∋

–! Ω∀−.−∋5?/74)/ϑ∋()∋.−∋∀∋=∀#∃%∃&ϑ∋/)&∋∀∋7)∗+%∃Ο∋∃Ο+)/∃/4∀%∋

–! !∀#∃%∃&−∋1∀#∃∋7)∗+∀7&∋−?++),&∋9Ξ∃,)∋#∀%?∃∋)?&−.<∃∋)5∋∀∋/∀,,)=∋./&∃,#∀%:∋

•! &,∀/−5),∗−∋7∀/∋%)7∀%.Ξ∃∋−.Ε/∀%∋<∃&∀.%−∋95,∃Β?∃/7.∃−:∋./∋4∗∃∋9−+∀7∃:∆∋Ψ1.−∋
&∃%%−∋?−∋/)&∋Ζ?−&∋∗+%#∋5,∃Β?∃/7.∃−∋∀,∃∋+,∃−∃/&∋Α?&∋∗+,−∋&1∃2∋)77?,∋

–! Σ),=∀,<∋∀/<∋./#∃,−∃∋&,∀/−5),∗−∋∀,∃∋7)∗+?&∀4)/∀%%2∋∃Τ7.∃/&Π∋.∀/∃∋7)∗+∀,∃<∋
&)∋.∀/0&12/∃∋5),∋Σ)?,.∃,∋

f (t) = al
l

" # l t()

al = f t()," l t() = f t()" l t()# dt

Ν.−7,∃&∃∋!∀#∃%∃&∋Ψ,∀/−5),∗−∋
Ψ1∃∋=∀#∃%∃&∋Α∀−.−∋∋5?/74)/∋.−∋7)/−&,?7&∃<∋5,)∗∋∀∋34%&5−2∋5?/74)/ϑ∋!:∋

=1.71∋.−∋,∃7?,−.#∃%2∋7)/−&,?7&∃<∋5,)∗∋−7∀%∃<ϑ∋<2∀<.7∋&,∀/−%∀&∃−∋)5∋.&−∃%5Π∋

=1.71∋%∃∀<−∋&)∋∀∋∗),∃∋Ε∃/∃,∀%∋,∃+,∃−∃/&∀4)/∋)5∋∀∋=∀#∃%∃&∋∃Ο+∀/−.)/∋)5∋!Π∋

f t() = c k()
k

" #k t() + d j k()
j= 0

log2 N

"
k

" $ j,k t()

" t() = h" k()
k

2" 2t $ k(), k % Z scaling function

" t() = h" k()
k

2$ 2t % k(), k & Z wavelet function

Ρ7∀%./Ε∋&∃,∗Π∋%)=∋,∃−)%?4)/∋

∀++,)Ο.∗∀4)/∋)5∋!∀#∃∋

Ν∃&∀.%∋&∃,∗Π∋1.Ε1∋5,∃Β?∃/72∋

7)∗+)/∃/&−∋)5∋−.Ε/∀%∋∗.−−./Ε∋

5,)∗∋−7∀%./Ε∋&∃,∗∋

Θ∗∀Ε∃∋7,∃<.&Π∋[∆∴∆∋Φ∀,Υ∃,∋

Σ)?,.∃,∋&,∀/−5),∗∋Α∀−.−∋

5?/74)/Π∋−./∃ϑ∋7)−./∃∋

6∋!∀#∃%−∗∀%%∋−∀∗+%./Ε∋)5∋=∀#∃%∃&∋Α∀−.−∋

5?/74)/−∋

()∗+∀7&∋−?++),&∋)5∋

=∀#∃%∃&−∋∃/∀Α%∃−∋∃Τ7.∃/&∋

&,∀/−5),∗−∋∀/<∋∀Α.%.&2∋)5∋

=∀#∃%∃&∋&,∀/−5),∗−∋&)∋.−)%∀&∃∋

−.Ε/∀%∋7)∗+)/∃/&−∋./∋4∗∃∋

9−+∀7∃:∋

!∀#∃%∃&∋7)∗+,∃−−.)/∋∀/<∋+,)Ε,∃−−.#∃∋∀77∃−−∋9]:∋

&#∀∋(∀)∗∃%+#()∗,−.)%/∀+0.1∋

•! Ψ,?/7∀&∃∋⊥6_∋+∀,∀∗∃&∃,∋./∋∃Ο+∀/−.)/Π∋

•! Φ,)#.<∃−∋7)∀,−∃/∃<∋∀++,)Ο.∗∀4)/∋)5∋−.Ε/∀%∋∀&∋+)=∃,≅)5≅&=)∋
./7,∃∗∃/&−∋

•! Γ))<∋∋

–! Ρ.∗+%∃∋&)∋.∗+%∃∗∃/&∋

–! ΧΟ&,∃∗∃%2∋7)∗+?&∀4)/∀%%2∋∃Τ7.∃/&∋9∗?71∋5∀−&∃,∋&1∀/∋,∃∀<./Ε∋<∀&∀:∋

–! 8∃&∀./∃<∋7)∃Τ7.∃/&−∋∀,∃∋.∗+%.7.&%2∋∀<<,∃−−∃<∋α∋/)∋∀<<.4)/∀%∋−&),∀Ε∃∋
,∃Β?.,∃<∋

–! Φ,)Ε,∃−−.#∃∋,∃;/∃∗∃/&∋,∃∀<.%2∋+,)#.<∃<∋

•! 3)&∋−)∋Ε))<Π∋
–! β.∗.&∃<∋&)∋+)=∃,≅)5≅&=)∋Ε,.<∋,∃<?74)/−∋

–! χ?∀%.&2∋)5∋∀++,)Ο.∗∀4)/−∋

f t() = c k()
k

" #k t() + d j k()
j= 0

log2 N

"
k

" $ j,k t()

Γ)∀%Π∋+,.),.4Ξ∃∋7)∃Τ7.∃/&−∋?−∃<∋./∋%./∃∀,∋∃Ο+∀/−.)/∋Α∀−∃<∋)/∋7)/&,.Α?4)/∋&)∋−.Ε/∀%∋

f t() = anu t()
n= 0

N"1

, original f (t) ˆ f t() = a
" m()

u t()
m=0

M #1

$, M < N(), compressed f (t)

L
2 = a" i()()

2

=
2

2

f t()# ˆ f t() , where a" i()
i= M

N#1

$ are discarded coefficients

Θ5∋7∀#∃∋∀,∃∋18#+1−189%&ϑ∋&1∃/Π∋

δ!∋Ψ1∃∋:;∋∃,,),∋.−∋&1∃∋−?∗∋)5∋&1∃∋−Β?∀,∃−∋)5∋&1∃∋7)∃Τ7.∃/&−∋=∃∋%∃∀#∃∋)?&ε∋

δ!∋Ρ)∋&)∋∗./.∗.Ξ∃∋&1∃∋βΗ∋∃,,),ϑ∋=∃∋−.∗+%2∋<.−7∀,<∋9),∋<∃%∀2∋&,∀/−5∃,:∋&1∃∋−∗∀%%∃−&∋

7)∃Τ7.∃/&−ε∋

δ!∋Θ5∋<.−7∀,<∃<∋7)∃Τ7.∃/&−∋∀,∃∋Ξ∃,)ϑ∋&1∃,∃∋.−∋/)∋./5),∗∀4)/∋%)−−ε∋

orthonormal : u"
k
t()u

l
t()dt =

0, k # l

1, k = l

$
%
&

'
(
)

L
2
= f (t) " ˆ f (t)

2

2

:;∋∃,,),∋Ε.#∃/∋Α2Π∋

!∀#∃%∃&∋7)∗+,∃−−.)/∋∀/<∋+,)Ε,∃−−.#∃∋∀77∃−−∋9Η:∋

2.∀3∗4∀)+%5#4.#4−6,−.)%/∀+0.1∋

6∋−.∗?%∀&∃<∋−)%∀,∋&1∃,∗∀%∋+%?∗∃∋∀&∋#∀,2./Ε∋Ε,.<∋,∃−)%?4)/−∋+,)#.<∃<∋

()∗+,∃−−.)/Π∋<8,=7,−4>∋?87−4%≅1−∋

φΙγΗΟΗΙγη∋

9/∀4#∃:∋
ΗφΗΗΟ]ΙΗγ∋]ΗιΗΟφ]Η∋ιϕΗΟΗφι∋

!1∀&∋1∀#∃∋=∃∋%)−&κκκ∋

Θ/&∃Ε,∀4)/∋)5∋∗∀Ε/∃47∋;∃%<∋%./∃−∋∋

()∗+,∃−−.)/Π∋5,∃Β?∃/72∋&,?/7∀4)/∋

]φϕιϕ∋λιηϕ∋

ϕηγϕ∋]µΗϕ∋

δ!]φϕιϕ∋>∴Ν∋Ρ.∗?%∀4)/∋

δ!γ&1∋),<∃,∋8?/Ε∃≅[?ν∃∋

δ!>././/.∋∃&∋∀%∆∋9ΗΙΙλ:∋

Σ,∃Β?∃/72∋#−∋7)∃Τ7.∃/&∋+,.),.4Ξ∀4)/∋

ιγΠ]∋()∗+,∃−−.)/∋

3)∋7)∗+,∃−−.)/∋Σ,∃Β?∃/72∋&,?/7∀4)/∋ ()∃Τ7.∃/&∋+,.),.4Ξ∀4)/∋

]ΙΗγϕ∋Ψ∀2%),≅Γ,∃∃/∋&?,Α?%∃/7∃∋9∃/−&,)+12∋;∃%<:∋οΦ∆∋>././/.ϑ∋ΗΙΙιπ∋

]ΙΙΠ]∋()∗+,∃−−.)/∋=.&1∋7)∃Τ7.∃/&∋+,.),.4Ξ∀4)/∋
]ΙΗγϕ∋Ψ∀2%),≅Γ,∃∃/∋&?,Α?%∃/7∃∋9∃/−&,)+12∋;∃%<:∋οΦ∆∋>././/.ϑ∋ΗΙΙιπ∋

No compression Coefficient prioritization (VDC2)

γΙµιϕ∋∴)∗)Ε∃/)?−∋&?,Α?%∃/7∃∋−.∗?%∀4)/∋∋

Μ)%?∗∃∋,∃/<∃,./Ε∋)5∋),.Ε./∀%∋∃/−&,)+12∋;∃%<∋∀/<∋ηΙΙΠ]∋7)∗+,∃−−∃<∋;∃%<∋

Data provided by P.K. Yeung at Georgia Tech and Diego

Donzis at Texas A&M

Original: 275GBs/field 800:1 compressed: 0.34GBs/field

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

In situ processing does visualization
as part of the simulation.

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

GetAccess

ToData
Process Render

Processor 0

Parallelized visualization data flow

network Parallel Simulation Code

GetAccess

ToData
Process Render

Processor 1

GetAccess

ToData
Process Render

Processor 2

GetAccess

ToData
Process Render

Processor 9

… … … …

In situ: pros and cons

!! Pros:

!!No I/O!

!!Lots of compute power available

!! Cons:

!!Very memory constrained

!!Many operations not possible

"!Once the simulation has advanced, you cannot go back and

analyze it

!!User must know what to look a priori

"!Expensive resource to hold hostage!

Difficult conversations in the future.

!! Conversations we should be having with our
customers...

!!How much memory are you willing to give up for
visualization?

!!Will you be angry if the vis algorithms crash?

!!Do you know what you want to generate a priori?

"!Can you re-run simulations if necessary?

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

!!∀!#∃%&∋#())∗++!

Brad Whitlock
Lawrence Livermore National Laboratory

Parallel In Situ Coupling of Simulation with a

Fully Featured Visualization System

Jean M. Favre
Swiss National Supercomputing Centre

Jeremy S. Meredith
Oak Ridge National Laboratory

39

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

A Marriage Between Two Fairly Inflexible Partners…

Simulation

Visualization and

Analysis

Application

Layer

In

Between

40

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

In Situ Processing Strategies

We find 3 main strategies for in situ processing:

In Situ Strategy Description Negative Aspects

Loosely coupled Visualization and analysis run on

concurrent resources and access

data over network

1)! Data movement costs

2)! Requires separate resources

Tightly coupled Visualization and analysis have

direct access to memory of

simulation code

1)! Very memory constrained

2)! Large potential impact

(performance, crashes)

Hybrid Data is reduced in a tightly coupled

setting and sent to a concurrent

resource

1)! Complex

2)! Shares negative aspects (to a

lesser extent) of others

41

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Loosely Coupled In Situ Processing

#! I/O layer stages data into

secondary memory

buffers, possibly on other
compute nodes

#! Visualization applications

access the buffers and

obtain data

#! Separates visualization

processing from

simulation processing

#! Copies and moves data

Simulation

data

Memory buffer

data

I/O Layer

Possible network boundary

Visualization tool

read

42

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Tightly Coupled Custom In Situ Processing

#! Custom visualization routines are

developed specifically for the

simulation and are called as
subroutines

•! Create best visual

representation

•! Optimized for data layout

#! Tendency to concentrate on very

specific visualization scenarios

#! Write once, use once

Simulation

data

Visualization

Routines

images, etc

43

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Tightly Coupled General In Situ Processing

#! Simulation uses data adapter

layer to make data suitable for

general purpose visualization
library

#! Rich feature set can be called

by the simulation

#! Operate directly on the

simulation’s data arrays when

possible

#! Write once, use many times

images, etc

Simulation

data

Data Adapter

General
Visualization Library

44

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Tightly

Coupled

Loosely

Coupled

Hybrid

Custom

General !

Which Strategy is Appropriate?

There have been many excellent

papers and systems in this space.

Different circumstances often merit

different solutions.

!

! !

45

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Design Philosophy

#! Visualization and analysis will be done in the same

memory space as the simulation on native data to avoid

duplication

#! Maximize features and capabilities

#! Minimize code modifications to simulations

#! Minimize impact to simulation codes

#! Allow users to start an in situ session on demand

instead of deciding before running a simulation

•! Debugging

•! Computational steering

46

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Selecting an In Situ Strategy

#! Our strategy is tightly coupled, yet general

#! Fully featured visualization code connects interactively

to running simulation

•! Allows live exploration of data for when we don’t

know visualization setup a priori

•! Opportunities for steering

#! We chose VisIt as the visualization code

•! VisIt runs on several HPC platforms

•! VisIt has been used at many levels of concurrency

•! We know how to develop for VisIt

47

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Visualization Tool Architecture

#! Clients runs locally and display

results computed on the server

Vis

Server

Vis

Server

Data
Plugin

Data
Plugin

Data
Plugin

Parallel Cluster Local VisIt Clients Files

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Vis

Server

Vis Server

Σ.%&∃,∋

Σ.%&∃,∋

Σ.%&∃,∋

Data Flow

Network

#! Server runs remotely in parallel,

handling data processing for client

#! Data processed in data flow

networks

#! Filters in data flow networks can

be implemented as plug-ins

48

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Coordination Among Filters Using Contracts

Ρ)?,7∃∋

Σ.%&∃,∋

Σ.%&∃,∋

U
p
d
a
te
!

E
x
e
c
u
te
!

Contract1!

Contract0!

data

49

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

L
ib

s
im

R
u

n
ti

m
e

Coupling of Simulations and VisIt

#! We created Libsim, a library that simulations use to let

VisIt connect and access their data

Simulation

Libsim

Front End

Data

Access
Code

Libsim

Front End

Data

Access
Code

Data

Ρ)?,7∃∋

Σ.%&∃,∋

Σ.%&∃,∋

50

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

A Simulation Using Libsim

Libsim
Runtime

Front
end

Parallel Cluster Local VisIt Clients

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Ν
∀
&∀
∋

Simulation Code

Simulation Code

Simulation Code

Data

Access
Code

Libsim
Runtime

Front
end

Data

Access
Code

Libsim
Runtime

Front
end

Data

Access
Code

#! Front end library lets VisIt connect

#! Runtime library processes the simulation’s data

#! Runtime library obtains data on demand through user-
supplied Data Access Code callback functions

51

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

In Situ Processing Workflow

1.! The simulation code launches and starts execution

2.! The simulation regularly checks for connection

attempts from visualization tool

3.! The visualization tool connects to the visualization

4.! The simulation provides a description of its meshes

and data types

5.! Visualization operations are handled via Libsim and

result in data requests to the simulation

52

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Instrumenting a Simulation

Additions to the source code are usually minimal, and

follow three incremental steps:

Initialize Libsim

and alter the

simulation’s
main iterative

loop to listen

for connections

from VisIt.

Create data

access callback

functions so
simulation can

share data with

Libsim.

Add control

functions that

let VisIt steer
the simulation.

53

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Adapting the Main Loop

Exit

Solve Next

Step

Check for

convergence,

end of loop

Visualization

Request

Complete VisIt

Connection

Process VisIt

Commands

Process

Console Input

VisItDetectInput

Initialize
#! Libsim opens a

socket and writes

out connection
parameters

#! VisItDetectInput

checks for:

•! Connection

request

•! VisIt

commands

•! Console input

54

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Sharing Data

#! VisIt requests data on demand through data access

callback functions

•! Return actual pointers to your simulation’s data

(nearly zero-copy)

•! Return alternate representation that Libsim can free

•! Written in C, C++, Fortran, Python

55

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Sharing Data Example

// Example Data Access Callback!

visit_handle!
GetVariable(int domain, char *name,!

void *cbdata)!
{!

 visit_handle h = VISIT_INVALID_HANDLE;!

 SimData_t *sim = (SimData_t *)cbdata;!
 if(strcmp(name, "pressure") == 0)!

 {!

 VisIt_VariableData_alloc(&h);!

 VisIt_VariableData_setDataD(h,!

 VISIT_OWNER_SIM, !
 1, sim->nx*sim->ny,!

 sim->pressure);!
 }!

 return h;!

}!

SimData_t
 Nx=6
 Ny=8

 pressure

Pass simulation

buffer to Libsim

Simulation Buffer

56

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Supported Data Model

#! Mesh Types

•! Structured meshes

•! Point meshes

•! CSG meshes

•! AMR meshes

•! Unstructured & Polyhedral meshes

#! Materials

#! Species

#! Variables

•! 1 to N components

•! Zonal and Nodal

57

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Adding Control Functions

#! The simulation

provides

commands to
which it will

respond

#! Commands

generate user
interface controls

in Simulations

Window

58

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Custom User Interfaces

#! Simulation can provide UI

description for more advanced

computational steering

59

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Libsim in Practice

#! We conducted our experiments on a 216 node

visualization cluster

•! Two, 6 core 2.8GHz Intel Xeon 5660 processors

•! 96Gb of memory per node

•! InfiniBandQDR high-speed interconnect

•! Lustre parallel file system

#! We measured the impact of Libsim on a simulation’s

main loop, without connecting to VisIt

#! We measured memory usage after loading VisIt

#! We instrumented GADGET-2, a popular cosmology

code, with Libsim and measured performance

60

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Impact on the Main Loop

#! Measure cost of calling Libsim in the main loop

#! Instrumenting the main loop for a parallel simulation

requires calling VisItDetectInput and MPI_Bcast

•! We timed how long it took to call both using 512

cores

•! 10K main loop iterations

Cores VisItDetectInput

overhead

MPI_Bcast

overhead

Overhead loading VisIt

runtime
libraries

512 2µs 8µs 1s (1 time cost)

61

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Impact on Memory Usage

#! Measure memory used before and after VisIt is

connected

#! Measured our updateplots example program

#! Read values from /proc/<pid>/smaps

Event Size Resident Set Size

Simulation startup 8.75 Mb 512 Kb

After Libsim Initialization 8.75 Mb 614 Kb

After Loading VisIt 222 Mb 43.5 Mb

62

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Impact on GADGET-2 Simulation

#! GADGET-2, a distributed-memory parallel code for
cosmological simulations of structure formation

#! We measured in situ performance versus I/O
performance at 3 levels of concurrency

•! Render 2048*2048 pixel image

•! Collective I/O and file-per-process I/O

•! 16 million particles and 100 million particles

#! Results show that in situ using a fully featured
visualization system can provide performance
advantages over I/O

•! We relied on VisIt’s ability to scale (runs up to
65,356 cores have been demonstrated)

63

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Libsim/GADGET-2 Timing Results

16M particles 32 cores 256 cores

I/O 1 file 2.76s 4.72s

I/O N files 0.74s 0.31s

In situ 0.77s 0.34s

100M particles 32 cores 256 cores 512 cores

I/O 1 file 24.45s 26.7s 25.27s

I/O N files 0.69s 1.43s 2.29s

In situ 1.70s 0.46s 0.64s

#! In situ competitive or faster than single file I/O with increasing cores

#! It should be possible to do several in situ operations in the time needed for I/O

#! Time savings compared to simulation followed by post processing

•! I/O results are the average of 5 runs per test case
•! In Situ results are averaged from timing logs for multiple cores

64

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

VisIt Connected Interactively to GADGET-2

65

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Additional Results

#! We have recently

instrumented additional

simulations to investigate
Libsim’s scaling

properties on a Cray XE6

using up to 4224 cores

#! We identified and

corrected a performance

bottleneck in Libsim’s

environment detection

functions

Time to Detect Environment

0

10

20

30

40

50

60

70

0 1000 2000 3000

T
im

e
 (

s
)

Number of Cores

Before fix

After fix

66

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Additional Results

#! Simulation was run on

11, 22, 44, 88 and 176

nodes (24 cores/node)

#! Each MPI task had a

512x512x100 block of

data to isocontour at 10

different thresholds

#! Parallel I/O to disk was

done with netCDF-4, in

files of size 27, 55, 110,

221, and 442 Gb per
iteration

Time per iteration

0

20

40

60

80

100

120

0 2000 4000 6000

T
im

e
 (

s
)

Number of Cores

in-situ contouring

Parallel disk IO

67

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Limitations of Implementation

#! Memory intensive

•! Runtime library cost is larger than with static-linking

since we use the whole feature set

•! Filters may use intermediate memory

•! Zero-copy is not fully implemented

#! We currently require an interactive session though with

some changes we could avoid this

68

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Future Work

#! Provide additional functions for setting up visualization

so in situ processing can be less user-driven

#! Further limit resources consumed by the VisIt runtime

libraries in order to lessen the impact that in situ

analysis has on the simulation

#! Characterize performance costs of using shared

libraries on larger scale runs

69

!!∀!#∃%&∋#())∗++!

Lawrence Livermore National Laboratory
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Conclusion

#! We have implemented Libsim, an easy to use library

that enables in situ computations

•! Provides access to a fully featured, parallel

visualization and analysis tool that excels at scale

•! Minimizes impact to simulation performance

•! Minimizes the amount of new code that must be

written

•! Fully integrated with the open-source distribution of

VisIt

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

In-situ Visualization

Examples

Dr. Jean M. Favre

Scientific Computing Research Group

20-05-2011

Outline

#! Problem description

#! A 2D solver with parallel partitioning

#! Need for ghost-nodes

#! In-situ visualization

–! Source code instrumentation

–! Specify ghost-nodes

–! Single stepping through the execution

Solving a PDE and visualizing the execution

Full source code solution is given here:

#! http://portal.nersc.gov/svn/visit/trunk/

src/tools/DataManualExamples/

Simulations/contrib/pjacobi/

#! C, F90 and Python subdirectories

A PDE with fixed boundary conditions

Update grid with solver

Fixed boundary conditions

Laplace equation: !u = 0

sin(" . x)

sin(" . x) . sin(- ")

0 0

2D grid partitioning and initialization

•!The grid is partitioned along the Y

direction

•!Boundary conditions are set

•!A single line of ghost-nodes insure

that the 5-point stencil is

continuous across MPI task
boundaries

I/O patterns

(mp+1) grid lines to read/write

(mp) grid lines to read/write

(mp) grid lines to read/write

(mp+1) grid lines to read/write

Check-pointing and restart

Ghost data exchange

Overlap Send and Receive

Proc. 0 does not receive from “below”

Proc. (N-1) does not send “above”

VisIt’s libsim implements a tight coupling

Desktop Machine Parallel Supercomputer

node220

node221

node222

node223

simulation

code VisIt

library
VisIt GUI

and Viewer

simulation

code

simulation

code

simulation

code

commands

images

M
P

I
M

P
I

M
P

I

VisIt

library

VisIt

library

VisIt

library

•!Link simulation source code

with visualization library.

•!Data is shared via pointers.

The source code needs to be instrumented

1.! The execution flow needs to check for

Visualization Requests

2.! Once connected, the simulation code needs to

advertize what data/meshes are available, and

3.! Provide pointers to data, or wrap data into the

expected form/shape

Source code examples are instrumented with:

#ifdef _VISIT_

#endif

Application’s flow diagram (before and after)

Connection to the

visualization

library is optional

Execution is step-

by-step or in

continuous mode

Live connection

can be closed

and re-opened at

later time

Exit

Initialize

Check for

convergence

Solve next

time-step

Visualization

requests

Complete VisIt

Connection

Process VisIt

Commands

Process

Console Input

VisIt-Detect-

Input

Step-by-step or continuous execution

#! A simulation would normally not wait for a connection and

execute as fast as possible.

These examples however, pause immediately, so they

won’t finish before you have time to connect!

The call visitdetectinput(bool blocking, -1) instructs the

simulation to wait for a connection at init time.

The examples also block after each timestep so you have

time to request multiple plots.

Use VisIt https://wci.llnl.gov/codes/visit

Users select simulations to

open as if they were files

The Simulation’s

window shows

meta-data about

the running code

Control commands

exposed by the code

are available here

All of VisIt’s existing

functionality is accessible

Data sharing

#! The VisIt Data API has just a few callbacks

–! GetMetaData()

–! GetMesh()

–! GetScalar(), GetVector()

–! Each MPI rank provides the full mesh/data (with ghost

regions) marked in a way similar to HDF5 hyperslabs or

MPI_Type_create_subarray().

grid mesh for in situ graphics

(mp+1) lines to send

(mp+1) lines to send

(mp+1) lines to send

(mp+2) lines to send

VisitRectMeshSetRealIndices(h, minRealIndex, maxRealIndex)

Use ghost-nodes to prevent overlaps

At least two entry points to the execution

Execution of the

next step can be

triggered by:

•!normal

program flow,

•!on-demand

single-stepping
from the GUI,

•!console input.

How much impact in the source code?

The best suited simulations are those allocating large

(contiguous) memory arrays to store mesh coordinates,

connectivity, and variables.

Memory pointers are used, and the simulation (or the

visualization) can be assigned the responsibility to de-
allocate the memory when done.

F90 example:

allocate (v(0:m+1,0:mp+1))

visitvardatasetd(h, VISIT_OWNER_SIM, 1, (m+2)*(mp+2), v)

How much impact in the source code?

The least suited are those pushing the Object Oriented

philosophy to a maximum.

Example: Finite Element code handling a triangular mesh:

TYPE Element

 REAL(r8) :: x(3)

 REAL(r8) :: y(3)

 REAL(r8) :: h

 REAL(r8) :: u

 REAL(r8) :: zb(3)

END TYPE Element

How much impact in the source code?

When data points are spread across many objects, there

must be a new memory allocation and a gathering done

before passing the data to the Vis Engine

REAL, DIMENSION(:), ALLOCATABLE :: cx

ALLOCATE(cx(numNodes) , stat=ierr)

DO iElem = 1, numElems+numHalos

 DO i = 1, 3

 cx(ElementList(iElem)%lclNodeIDs(i)) = ElementList(iElem)%x(i)

 END DO

END DO

err = visitvardatasetf(x, VISIT_OWNER_COPY, 1, numNodes, cx)

The in-situ library provides many features

#! Access to scalar, vector, tensor arrays, and label

#! CSG meshes, multi-block meshes, AMR meshes

#! Polyhedra

#! Material species

#! Ability to save images directly from the simulation

#! Interleaved XY, XYZ coordinate arrays

#! Connecting in-situ does not mean you cannot do I/O

to files anymore.

The merits of libsim

#! The greatest bottleneck (disk I/O) can be eliminated

#! Not restricted by limitations of any file format

#! No need to reconstruct ghost-cells from archived data

#! All time steps are potentially accessible

#! All problem variables can be visualized

#! Internal data arrays can be exposed or used

#! Step-by-step execution will help you debug your code and

your communication patterns

#! The simulation can watch for a particular event and trigger

the update of the VisIt plots

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Data subsetting eliminates pieces that
don’t contribute to the final picture.

P0!

P1!
P3!

P2!

P8!
P7!P6!

P5!

P4!

P9!

Pieces of

data
(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization

data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Data Subsetting: pros and cons

!! Pros:

!!Less data to process (less I/O, less memory)

!! Cons:

!!Only applicable to some algorithms

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

Query-Driven Visualization

Kurt Stockinger, Kesheng (John) Wu,

John Shalf, and Wes Bethel

Computational Research Division

Lawrence Berkeley National Laboratory

November 2005

Motivation and Problem Statement

"! Too much data.

"! Visualization “meat grinders” not
especially responsive to needs of
scientific research community.

"! What scientific users want:
•! Scientific Insight

•! Quantitative results

•! Feature detection, tracking,
characterization

•! (lots of bullets here omitted)

"! See:
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf

http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf

Motivation and Problem Statement

"! Too much data.

"! Visualization “meat grinders” not
especially responsive to needs of
scientific research community.

"! What scientific users want:
•! Scientific Insight

•! Quantitative results

•! Feature detection, tracking,
characterization

•! (lots of bullets here omitted)

"! See:
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf

http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf

Today’s Main Message

"! Visualization stands to benefit in a huge way by leveraging technology

from the field of scientific data management.

"! An introduction to compressed bitmap indexing using reference points

familiar to the visualization community.

"! Compressed bitmap indexing:

•! Has low storage overhead.

•! Has low computational complexity (theoretically optimal).

•! Accommodates n-dimensional queries.

"! Topics for another day:

•! Assisted/guided query posing.

•! Effective visualization of n-dimensional data.

Query-Driven Visualization: Visual Example

"! CH4 > 0.3

"! Temp < T1

"! CH4 > 0.3 AND temp < T1

"! CH4 > 0.3 AND temp < T2

•! T1 < T2

Architecture Overview: Generic Vis Pipeline

Data Vis Render

Architecture Overview: Query-Driven Pipeline

Vis Render

Index

Data
Query

FastBit

(Region

Growing)

DEX

What is Query-Driven Visualization?

"! Focus visualization processing on subsets of data deemed

to be “interesting.”

•! “Interesting” is something the user needs to define.

"! Challenges

•! How to define “interesting.”

•! Formulation of definition (domain-specific).

•! Expression of definition (semantic).

•! Find interesting data quickly (data management).

•! Effective visual presentation of “interesting data” (visualization).

•! Architectures/deployment that complements existing visualization
algorithms and applications (computer science).

Value of Multi-dimensional Queries

"! New opportunities for scientific insight: N-dimensional

queries are the basis for complex analysis and hypothesis

testing.

•! What are the characteristics of a flame front?

•! How are two (or n) Supernovae explosions similar/different?

•! Will this vaccine work against the Bird Flu?

•! Temporal-based queries and analysis.

"! Reducing processing and interpretation load.

•! 100TB datasets being queued up now.

•! Increased spatial resolution.

•! Lots more variables per cell.

•! Can’t expect a user to visually process 100TB of data.

104

Finding Data Quickly: Why Bitmap Indices

"! In the data management community, the bitmap indices

have supplanted trees for “heavy lifting” queries.

"! Bitmap indices do not suffer from curse of dimensionality.

"! Bitmap indices used in all major commercial database

systems.

"! Caveat: Bitmap indexing is not the panacea for everything:

•! Spatial vs. Data-value partitioning: visibility culling.

105

What is a Bitmap Index?

"! Compact: one bit per distinct

value per object.

"! Easy and fast to build: O(n) vs.

O(n log n) for trees.

"! Efficient to query: use bitwise

logical operations.

(0.0 < H2O < 0.1) AND (1000 <

temp < 2000)

"! Efficient for multidimensional

queries.

•! No “curse of dimensionality”

"! What about floating-point data?

•! Binning strategies.

Data!

values!

0!

1!

5!

3!

1!

2!

0!

4!

1!

1!

0!

0!

0!

0!

0!

1!

0!

0!

0!

1!

0!

0!

1!

0!

0!

0!

1!

0!

0!

0!

0!

0!

1!

0!

0!

0!

0!

0!

0!

1!

0!

0!

0!

0!

0!

0!

0!

0!

0!

0!

0!

0!

1!

0!

0!

0!

1!

0!

0!

0!

0!

0!

0!

b
0!

b
1!

b
2!

b
3!
b
4!

b
5!

106

Bitmap Index Query Complexity and Space

Requirements

"! How Fast are Queries Answered?

•! Let N denote the number of objects and H denote the number of hits of
a condition.

•! Using uncompressed bitmap indices, search time is O(N)

•! With a good compression scheme, the search time is O(H) – the
theoretical optimum.

"! How Big are the Indices?

•! In the worst case (completely random data), the bitmap index requires
about 2x in data size (typically 0.3x).

•! In contrast, 4x space requirement not uncommon for tree-based
methods.

•! Curse of dimensionality: for N points in D dimensions:

•! Bitmap index size: O(N*D)

•! Tree-based method: O(N**D)

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

FASTBIT TUTORIAL

Outline

$! Overview

$! Basic functions

$! Top-level interface

$! Application example

John Wu

Scientific Data Management

Berkeley Lab

http://sdm.lbl.gov/fastbit

Overview

!! Task: given a large collection of data, efficiently
locate records satisfying a set of conditions

!! Example data – structured data:
!! High-energy physics data – billions of collision events,

with hundreds of variables

!! Simulation data on a mesh – each mesh point may be
viewed as a record/row, each variable a column

!! Example queries:
!! Count how many records where pressure > 1000 and

temperature between 500 and 1000

!! Select all records where momentum > …

!! FastBit solves this search problem with

!! Column data organization

!! Bitmap index

!! FastBit is an award-winning open-source software

!! R&D100 award (2008)

!! Used in a number of research projects

te
m

p
e
ra

tu
re

p
re

s
s
u

re

m
o

m
e
n

tu
m

row

c
o

lu
m

n

What FastBit Is Not

" ! Not a database management system (DBMS)

!! It is much closer to BigTable than to ORACLE

!! Most SQL commands are not supported

" ! Not a plug-in for a DBMS

!! It is a stand-alone data processing tool

!! No DBMS is needed in order to use FastBit

" ! Not an internet search engine

!! FastBit is primarily for structured data; internet search

engines are for text (unstructured) data

" ! Not a client-server system

!! FastBit has been used in server programs, but by itself, it is

not a client-server system

How Do I Use FastBit

!! Command-line tools

!!A handful of command-line tools are available to load

data, build indexes, and query data

!! Write your own program using FastBit as a library

!!Two levels of API:

"!Class table

"!Class part + query

!!FastBit is written in C++

"!Other languages may access FastBit through C API

FastBit Data Model

!! FastBit is designed to search multi-

dimensional append-only data

!! Conceptually in table format

"! rows % objects

"! columns % attributes

!! FastBit uses vertical (column-oriented)

data organization

!! Efficient for searching

!! Physical data layout

!! A data table is split into “partitions”

!! Each partition is a directory in a file system

!! Each directory has a metadata file describing

the data partition

!! Each column is represented by a file

row

c
o

lu
m

n

113

A < 2 2 < A

Basic Bitmap Index
!! First commercial version

!! Model 204, P. O’Neil, 1987

!! Easy to build: faster than building B-trees

!! Efficient for querying: only bitwise logical
operations

!! A < 2 & b0 OR b1

!! A > 2 & b3 OR b4 OR b5

!! Efficient for multi-dimensional queries

!! Use bitwise operations to combine the
partial results

!! Size: one bit per distinct value per row

!! Definition: Cardinality == number of
distinct values

!! Compact for low cardinality attributes,
say, cardinality < 100

!! Worst case: cardinality = N, number of
rows; index size: N*N bits

Data

values

0

1

5

3

1

2

0

4

1

1

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

=0 =1 =2 =3 =4 =5

b0 b1 b2 b3 b4 b5

Strategies to Improve Bitmap
Index
!! Compression

!! Reduce the size of each individual bitmap

!! Best known compression method: Byte-aligned Bitmap Code
[Antoshenkov 1994], used in Oracle bitmap index

!! Word-Aligned Hybrid (WAH) code trades some disk space for much
more efficient query processing

!! Encoding

!! Basic equality encoding, in Model 204

!! Multi-component encoding [Chan and Ioannidis 1998]

!! Multi-level encoding

!! Binning

!! Equal-width binning, equal-depth binning, …

!! Has to perform candidate check to rule out false positives, time for
candidate check dominates the total query response time

!! Order-preserving Bin-based Clustering (OrBiC)
114

Outline

!! Multi-resolution processing

!!Space filling curves (from Valerio Pascucci)

!!Wavelet compression (from John Clyne)

!! In situ processing

!!System overview (from Brad Whitlock)

!!Example in action (from Jean Favre)

!! Query-driven visualization

!!Overview (from Wes Bethel)

!!FastBit (from John Wu)

!!Example in action (from Oliver Ruebel)

High Performance Multivariate Visual Data Exploration for

Extremely Large Data

Oliver Rübel1,2,3, Prabhat1, Kesheng Wu1, Hank Childs4, Jeremy Meredith5,
Cameron G.R. Geddes6, Estelle Cormier-Michel6, Sean Ahern5, Gunther H. Weber1,2,3,

Peter Messmer7, Hans Hagen2, Bernd Hamann3,2,1 and E. Wes Bethel1,3

1. Computational Research Division, Lawrence Berkeley National Laboratory (LBNL)
2. International Research Training Group 1131, University of Kaiserslautern, Germany

3. Institute for Data Analysis and Visualization, University of California, Davis
4. Lawrence Livermore National Laboratory (LLNL)

5. Oak Ridge National Laboratory (ORNL)
6. LOASIS program of Lawrence Berkeley National Laboratory
7. Tech-X Corporation

Overview:

•! Enable rapid knowledge discovery from large, complex, multivariate, time-varying data

•! Illustrate in a case study how our system can be used to effectively analyze laser

 wakefield particle acceleration data

•! Analyze the performance of our system

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Motivation

Motivation

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Simulation

Data Analysis

Create Animation Analyze & Identify Particle Bunch Trace Particles

Laboratory Experiments

System Design

References:

•! VisIt is available from https://wci.llnl.gov/codes/visit/

•! FastBit is available from https://codeforge.lbl.gov/projects/fastbit

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Data Selection

Why FastBit:

•! Query response time is a linear function of the number of hits O(H)

•! Particle tracking: Naïve approach: O(n2)

 With FastBit: O(H*t)

•! Conditional histogram: Naïve approch: O(n)

 FastBit: O(H)

•! Linear spatial and computational complexity with respect to number of data dimension

•! FastBit indices can be constructed fast

•! FastBit indices are small compared to, e.g., B-trees [2 Fig.7]

•! FastBit implements fastest known bitmap compression technique [2]

•! R&D100 award [1]

We use FastBit to accelerate:

•! Computation of conditional histograms used for rendering of parallel coordinates

•! Multi-dimensional threshold queries used for identification of particles of interest

•! ID-queries used for tracing of particles over time

References:
[1] FastBit is available from https://codeforge.lbl.gov/projects/fastbit
[2] K. Wu, E. Otoo, and A. Shoshani, ”Compressing bitmap indexes for faster search operations”, ACM Transactions on Database Systems,

 vol 31, pp. 1-38, 2006

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Introduction to Parallel Coordinates

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

2D Scatter-plot Parallel Coordinates

X Y
X

Y

Introduction to Parallel Coordinates

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Advantages:

•! Enable display of many data dimensions in parallel

•! Easy to use interface for defining data selections

•! Immediate feedback is provided while performing data selection

Scatter-plot Matrix Parallel Coordinates
X

Y

PX

Y

Histogram-based Parallel Coordinates

References:

•! M. Novotny and H. Hauser, “Outlier-preserving focus+context visualization in parallel coordinates,” IEEE Transactions on Visualization and Computer

Graphics, vol. 12, no. 5, pp. 893-900. 2006.

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Disadvantages:

•! Rendering and computational complexity is directly proportional to the size of the

displayed data

•! Clutter

•! Occlusion

•! Order dependent visualization

Solution:

•! Use 2D-histograms as basis for the rendering not the raw data

Histogram-based Parallel Coordinates cont.

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Histogram-based Parallel Coordinates cont.

Histograms are computed on request:

•! Enable rendering also of data subsets using histogram-based parallel coordinates

•! Enable rendering with arbitrary number of bins

•! Enable close zoom-ins and smooth drill-downs into the data

Allow use of adaptively binned histograms:

•! Enable more accurate representation of the data in lower-level-of-.detail views

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

32x32 uniform binning 32x32 adaptive binning

Laser Wakefield Particle Acceleration

Advantages:

•! Can achieve electric fields thousands of times stronger than in conventional accelerators

 % Can achieve high acceleration in very short distance.

References:

•! C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, “High-Quality Electron Beams from a

Laser Wakefield Accelerator using Plasma-Channel Guiding,” Nature, vol. 438, pp. 538-541, 2004

Image courtesy of http://worldwakesurfingchampionships.com

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Data Overview

•! Simulation: VORPAL, 2D and 3D

•! Particle data:

•! Scattered data

•! x,y,z (location), px, py, pz (momentum), id (particle identifier)

•! No. of particles per timestep:

•! ~ 0.4*106 – 30*106 (in 2D)

•! ~80*106– 200 *106 (in 3D)

•! Total size:

•! ~1.5GB – >30GB (in 2D)

•! ~100GB – >1TB (in 3D)

•! Field data:

•! Defined on regular grid

•! Electric field, magnetic field, and RhoJ

•! Resolution: Typically ~0.02-0.03µm longitudinally, and ~ 0.1-0.2µm transversely

•! Total size:

•! ~3.5GB - >70GB (in 2D)

•! ~200GB - >2TB (in 3D)

References:

•! Cameron G.R. Geddes, ”Plasma Channel Guided Laser Wakefield Accelerator,” Phd-thesis, University of California, Berkeley, CA, 2005

•! C. Nieter and J. R. Cary, “VORPAL: A Versatile Plasma Simulation Code,” J. Comput. Phys., vol. 196, no. 2, pp. 448–473, 2004.

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

3D Analysis Example

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Selected particles (red) and volume rendering of the plasma density

Traces of the the selected particle-bunch

Selecting particles of interest

Performance tests

!! Serial Performance Tests:

•! Unconditional histograms:

•! Characterize the effect of varying the number of bins on the histogram

computation

•! Conditional histograms:

•! Characterize the effect of the number of hits on the computation of conditional

histograms

•! Particle Selection:

•! Characterize the performance of ID-queries

!! Parallel Performance Tests:

•! Characterize scalability of:

•! Computation of histograms

•! Particle tracking

!! Setup:

•! Compare FastBit-enabled application to Custom application performing a sequential

scan
Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Serial Performance I: Unconditional Histograms

Dataset:

•! 3D dataset consisting of 30 timesteps

•! ~90 million particles per timestep

•! ~7GBper timestep (including ~2GB for the index)

•! ~210GB total size

Test platform:

•! Workstation

•! CPU: 2.2GHz AMD Opteron

•! Memory: 4GB RAM

•! OS: SuSE Linux

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Setup:

•! Test performance with

increasing bin counts:

32x32 to 2048x2048

Custom:

•! Perform sequential scan

Use Case:

•! Initial computation of the

context of parallel coordinates

Serial Performance II: Conditional Histograms

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Setup:

•! Compute 1024x1024 histogram

with varying condition (px>...)

•! By increasing the threshold the

number of hits decreases

Custom:

•! Perform sequential scan

Use Case:

•! Focus of parallel coordinates

Dataset:

•! 3D dataset consisting of 30 timesteps

•! ~90 million particles per timestep

•! ~7GBper timestep (including ~2GB for the index)

•! ~210GB total size

Test platform:

•! Workstation

•! CPU: 2.2GHz AMD Opteron

•! Memory: 4GB RAM

•! OS: SuSE Linux

Serial Performance III: Particle Selection

Setup:

•! Perform ID query at a single

timestep and vary the size of

the search set S

Custom:

•! Compare particle ID of each

data record to the search set

•! Use efficient search algorithm

with O(log(S)) complexity

Use Case:

•! Trace particle subset

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Dataset:

•! 3D dataset consisting of 30 timesteps

•! ~90 million particles per timestep

•! ~7GBper timestep (including ~2GB for the index)

•! ~210GB total size

Test platform:

•! Workstation

•! CPU: 2.2GHz AMD Opteron

•! Memory: 4GB RAM

•! OS: SuSE Linux

Parallel Performance I: Histograms

Dataset:

•! 3D dataset consisting of 100 timesteps

•! ~177 million particles per timestep
•! ~10 GB per timestep

•! ~1TB total size

Test platform: (as of July.2008)

•! franklin.nersc.gov

•! 9,660 nodes, 19K cores Cray XT4 system
•! Filesystem: Lustre Parallel Filesystem

•! Each node consists of:

•! CPU: 2.6 GHz, dual-core AMD Opteron

•! Memory: 4GB

•! OS: Compute Node Linux

Test setup:

•! Restrict operations to a single core of each node to

maximize I/O bandwidth available to each process
•! Assign data subsets corresponding to individual

timesteps to individual nodes for processing

•! Generate five 1024x1024 histograms for position

and momentum fields at each timestep

•! Conditon: px>7*1010

•! Levels of parallelism: 1, 2, 5, 10, 20, 50, 100

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Parallel Performance II: Particle Tracking

Test setup:

•! Same as for histogram computation

•! Track 500 particles (Condition: px>1011) over 100
timesteps

Results:

•! FastBit is able to track 500 particles over 1.5TB of

data in 0.15 seconds

Performance of original IDL scripts:

•! ~2.5 hours to track 250 particles in small 5GB

dataset

Motivation System Design Parallel Coordinates Use Case Performance Conclusions

Summary

!! Query-driven visualization allows for rapid
exploration of data (in some scenarios).

!! The FastBit library is an example technology for
accelerating loading of subsets.

!! These techniques fit well within the data flow
framework.

Putting it all together: a visualization

application for very large data

Hank Childs, Lawrence Berkeley Lab & UC Davis June 17, 2011

VisIt is an open source, richly featured,
turn-key application for large data.

!! Used by:

!!Visualization experts

!!Simulation code developers

!!Simulation code consumers

!! Popular

!!R&D 100 award in 2005

!!Used on many of the Top500

!!>>>100K downloads

217 pin reactor cooling simulation

Run on ! of Argonne BG/P

Image credit: Paul Fischer, ANL

1 billion

grid points

Terribly Named!!!
… intended for much more than just visualization

Data Exploration Presentations

Visual

Debugging

Analysis

!! Techniques that span scientific domains (e.g.

integration, volumes, surface areas, fluxes, connected
components, chord length distributions)

!! Specialized analysis (e.g. hohlraum flux at AGEX)

Detector

at AGEX

Detector

provided by VisIt

(synthetic diagnostic)

What sort of analysis is appropriate
for VisIt?

Aside: Why address so many postprocessing
problems with a single program?

!! Answer: It is economical to do so.

!! For developers: shared assets / code re-use

!!Data infrastructure (esp. for large data)

!! File readers

!! Proper interpretation of data (ie material interface
reconstruction)

!! Shared algorithms (multiple ways to slice & dice data)

!!High flexibility and extensibility

!! For users:

!! Learn a single tool

!!Divisions between areas of postprocessing often blur

VisIt has a rich feature set.

!! Meshes: rectilinear, curvilinear, unstructured, point, AMR

!! Data: scalar, vector, tensor, material, species

!! Dimension: 1D, 2D, 3D, time varying

!! Rendering (~15): pseudocolor, volume rendering, hedgehogs,
glyphs, mesh lines, etc…

!! Data manipulation (~40): slicing, contouring, clipping,

thresholding, restrict to box, reflect, project, revolve, …

!! File formats (~115)

!! Derived quantities: >100 interoperable building blocks

!! +,-,*,/, gradient, mesh quality, if-then-else, and, or, not

!! Many general features: position lights, make movie, etc

!! Queries (~50): ways to pull out quantitative information,
 debugging, comparative analysis

VisIt employs a parallelized client-
server architecture.

!! Client-server
observations:

!!Good for remote
visualization

!! Leverages available
resources

!! Scales well

!!No need to move data

!! Additional design
considerations:

!! Plugins

!! Heavy use of VTK

!! Multiple UIs: GUI

(Qt), CLI (Python),

more…

remote machine

Parallel vis resources

User

data

 localhost – Linux, Windows, Mac

Graphics

Hardware

It takes a lot of research to make VisIt work

Systems research:

Adaptively applying

algorithms in a
production env.

Algorithms research:

How to efficiently

calculate particle
paths in parallel.

Algorithms research:

How to volume

render efficiently in
parallel.

Methods research:

How to incorporate

statistics into
visualization.

Scaling research:

Scaling to 10Ks of

cores and trillions of
cells.

Architectural

research:

Hybrid parallelism +
particle advection

Systems research:

Using smart DB

technology to
accelerate processing

Architectural

research:

Parallel GPU
volume rendering

Algorithms research:

Reconstructing

material interfaces for
visualization

Algorithms research:

Accelerating field

evaluation of huge
unstructured grids

The VisIt team focuses on making a
robust, usable product for end users.

•! Manuals
–! 300 page user manual

–! 200 page command line interface manual

–! “Getting your data into VisIt” manual

•! Wiki for users (and developers)

•! Revision control, nightly regression testing, etc

•! Executables for all major platforms

•! Tutorial & day long class, complete with exercises

Slides from the VisIt class

VisIt is a vibrant project with many
participants.

!! Over 75 person-years of effort

!! Over 1.5 million lines of code

!! Partnership between: Department of Energy’s Office of Science,
National Nuclear Security Agency, and Office of Nuclear Energy,
the National Science Foundation XD centers (Longhorn XD and
RDAV), and more….

2004-6

User community

grows, including

AWE & ASC

Alliance schools

Fall ‘06

VACET is funded

Spring ‘08

AWE enters repo

2003

LLNL user

community

transitioned

to VisIt

2005

2005 R&D100

2007

SciDAC Outreach

Center enables

Public SW repo

2007

Saudi Aramco

funds LLNL to

support VisIt

Spring ‘07

GNEP funds LLNL

to support GNEP

codes at Argonne

Summer‘07

Developers from

LLNL, LBL, & ORNL

Start dev in repo

‘07-’08

UC Davis & UUtah

research done

in VisIt repo

2000

Project started

‘07-’08

Partnership with

CEA is developed

2008

Institutional support

leverages effort from

many labs

More developers

Entering repo all

the time

VisIt: What’s the Big Deal?

!! Everything works at scale

!! Robust, usable tool

!! Features that span the “power of visualization”:
!!Data exploration
!!Confirmation
!!Communication

!! Features for different kinds of users:
!!Vis experts
!!Code developers
!!Code consumers

!! Healthy future: vibrant developer and user communities

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

Can I use a pre-built VisIt binary or do
I need to build it myself?

!! Pre-built binaries work on most modern machines.

!! … but pre-built binaries are serial only.

!!Why the VisIt team can’t offer parallel binaries:
Your MPI libraries, networking libraries are unlikely to
match ours

!! Recommendation: try to use the pre-builts first and
build VisIt yourself if they don’t work.

!! Also: all VisIt clients run serial-only. If you want to
install VisIt on your desktop to connect to a remote
parallel machine, serial is OK.

How do I use pre-built VisIt binaries?

!! A: Go to http://www.llnl.gov/visit

How do I use pre-built VisIt binaries?

How do I use pre-built VisIt binaries?

Important

How do I use pre-built VisIt binaries?

How do I use the pre-built VisIt binaries?

!! Unix & Mac:
!!Download install script

!!Download binary

!! Run install script

!! --or—

!!Download binary

!!Untar

!! Windows:
!!Download installer program & run

!! Full install notes:
!! https://wci.llnl.gov/codes/visit/2.1.0/INSTALL_NOTES

Good for host profiles,

maintaining multiple versions,
multiple OSs

Quick & easy

Important step: choosing host profiles

!! Many supercomputing sites have set up “host profiles”.

!! These files contain all the information about how to connect
to their supercomputers and how to launch parallel jobs
there.

!! You select which profiles to install when you install VisIt.

!! Profiles that come with VisIt:

!!NERSC, LLNL Open, LLNL Closed, ORNL, Argonne, TACC,
LBNL desktop network, Princeton, UMich CAC

!! Other sites maintain profiles outside of VisIt repository.

!! If you know folks running VisIt in parallel at a site not listed
above, ask them for their profiles.

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

Building VisIt from scratch

!! Building VisIt from scratch on your own is very
difficult.

!! … but the “build_visit” script is fairly reliable.

What “build_visit” does

!! Downloads third party libraries

!! Patches them to accommodate OS quirks

!! Builds them

!! Creates “config-site” file, which communicates
information about where 3rd party libraries live to
VisIt’s build system.

!! Downloads VisIt source code

!! Builds VisIt

“build_visit” details

!! There are two ways to use build_visit:

!!Curses-style GUI

!!Command line options through –console

"!Developers all use –console and it shows!!

!! Tips:

!!Don’t build every third party library unless you really
need to.

!!Set up a “—thirdparty-path”.

“build_visit” details

!! Q: How long does build_visit take? A: hours

!! Q: I have my own Qt/VTK/Python, can I use those?

!!Hank highly recommends against

!! Q: What happens after build_visit finishes?

!!A1: you can run directly in the build location

!!A2: you can make a package and do an install like you
would with the pre-built binaries

“build_visit” details

!! Most common build_visit failures:
!! gcc is not installed

!! X11 development package is not installed

!!OpenGL development package is not installed

!! Most common VisIt runtime failure: really antique
OpenGL drivers.
!!Hank runs SUSE 9.1 (from 2005) at home.

!! Build process for Windows is very different. Rarely a
need to build on Windows, aside from VisIt
development.

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

How to get your data into VisIt

!! There is an extensive (and up-to-date!) manual on
this topic: “Getting Your Data Into VisIt”

!! Three ways:

!! Use a known format

!! Write a file format reader

!! In situ processing

!! Latter two covered in
afternoon course

File formats that VisIt supports

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW,
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, Gadget,
Images (TIFF, PNG, etc), ITAPS/MOAB, LAMMPS,
NASTRAN, NETCDF, Nek5000, OpenFOAM, PLOT3D,
PlainText, Pixie, Shapefile, Silo, Tecplot, VTK, Xdmf, Vs,
and many more
!! 113 total readers

!! Some readers are more robust than others.
!! For some formats, support is limited to flavors of a file a

VisIt developer has encountered previously (e.g. Tecplot).

File formats that VisIt supports

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW,
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, Gadget,
Images (TIFF, PNG, etc), ITAPS/MOAB, LAMMPS,
NASTRAN, NETCDF, Nek5000, OpenFOAM, PLOT3D,
PlainText, Pixie, Shapefile, Silo, Tecplot, VTK, Xdmf, Vs,
and many more

!! BOV: raw binary data for rectilinear grid
!!#you have a brick of data and you add an ASCII header

that describes dimensions

!! PlainText: reads space delimited columns.
!!Controls for specifying column purposes

File formats that VisIt supports

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW,
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL,
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB,
LAMMPS, NASTRAN, NETCDF, Nek5000,
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile,
Silo, Tecplot, VTK, Xdmf, Vs, and many more

!! NETCDF: VisIt reader understands many (but not all)
conventions

!! Pixie: most general HDF5 reader
!!Many other HDF5 readers

File formats that VisIt supports

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW,
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL,
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB,
LAMMPS, NASTRAN, NETCDF, Nek5000,
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile,
Silo, Tecplot, VTK, Xdmf, Vs, and many more

!! Xdmf: specify an XML file that describes semantics
of arrays in HDF5 file

!! VizSchema (Vs): add attributes to your HDF5 file
that describes semantics of the arrays.

File formats that VisIt supports

!! ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW,
EnSight, ENZO, Exodus, FLASH, Fluent, GDAL,
Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB,
LAMMPS, NASTRAN, NETCDF, Nek5000,
OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile,
Silo, Tecplot, VTK, Xdmf, Vs, and many more

!! VTK: not built for performance, but it is great for
getting into VisIt quickly

!! Silo: higher barriers to entry, but performs well and
fairly mature

VTK File Format

!! The VTK file format has both ASCII and binary
variants.

!!Great documentation at
http://www.vtk.org/VTK/img/file-formats.pdf

!! Easiest way to write VTK files: use VTK modules

!!… but this creates a dependence on the VTK library

!! You can also try to write them yourself, but this is an
error prone process.

!! Third option: visit_writer

VisItWriter writes VTK files

!! It is a “library” (actually a single C file) that writes VTK-
compliant files.
!! The typical path is to link visit_writer into your code and

write VTK files

!! There is also Python binding for visit_writer.
!! The typical path is to write a Python program that converts

from your format to VTK

!! Both options are short term: they allow you to play with
VisIt on your data. If you like VisIt, then you typically
formulate a long term file format strategy.

!! More information on visit_writer:
!! http://visitusers.org/index.php?title=VisItWriter

Python VisItWriter in action

Silo file format

!! Silo is a mature, self-describing file format that
deals with multi-block data.

!! It has drivers on top of HDF5, NetCDF, and “PDB”.

!! Fairly rich data model

!! More information:

!!https://wci.llnl.gov/codes/silo/

Silo features

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

How to get help when you run into
trouble

!! Six options:
!!FAQ

"!http://visit.llnl.gov/FAQ.html

!!Documentation
"!https://wci.llnl.gov/codes/visit/doc.html

"!http://www.visitusers.org

!!VisIt-users mailing list

!!VisIt-users archives

!!VisIt users forum

!!VisIt-help-XYZ mailing list

Manuals & documentation

!! Getting started manual

!! Users manual (old, but still useful)

!! Python interface (to be updated in two weeks)

!! Getting Data Into VisIt

!! VisIt Class Slides

!! VisIt Class Exercises

!! This Tutorial

Visitusers.org

!! Users section has lots of
practical tips:

!!“I solved this problem
with this technique”

!!“Here’s my script to do
this functionality”

!! In practical terms, this is
a staging area for
formal documentation in
the future.

FAQ: http://visit.llnl.gov/FAQ.html

VisIt-users mailing list

!! You may only post to mailing list if you are also a subscriber

!! Approximately 400 recipients, approx. 300 posts per
month.

!! Developers monitor mailing list, strive for 100% response
rate

!! Response time is typically excellent (O(1 hour))
!! International community really participates … not unusual for a

question from Australia to be answered by a European all while
I’m asleep

!! List: visit-users@ornl.gov

!! More information:
https://email.ornl.gov/mailman/listinfo/visit-users

!! Archive: https://email.ornl.gov/pipermail/visit-users/

VisIt User Forum

!! Increasingly popular option; you can post without
receiving 300 emails a month

!!But it is viewed by less people and less well supported.

!! http://www.visitusers.org/forum

Visit-help-xyz

!! Some customer groups pay for VisIt funding and get
direct support.

!!These customers can post directly to visit-help-xyz
without being a subscriber

!!The messages are received by all VisIt developers and
supported communally

!! Lists:

!!Visit-help-asc, visit-help-scidac, visit-help-gnep, visit-
help-ascem

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

It is possible (although non-trivial) to
write a custom user interface to VisIt)

“How to make VisIt work after you get
home”

!! How to get VisIt running on your machine

!!Downloading and installing VisIt

!!Building VisIt from scratch

!! How to get VisIt to read your data

!! How to get help when you run into trouble

!! I like the power of VisIt, but I hate the interface

!! How to run client-server

How to run client-server

!! There are two critical pieces:

!!Connecting to the remote machine

!!Getting an engine launched on the remote machine

!! This job is made substantially easier by host profiles.

!! (Demonstration)

VisIt’s Data Model

!! A very rich data model

!!Closer to the “computational model”

!! Internally implemented with VTK

!! Many conventions built on top of VTK

!! All data in VisIt lives on a mesh

!! Discretizes space into points and cells

!!1D, 2D, 3D

!!All of these over time (up to 4D)

!!Can have lower-dimensional meshes in a
higher-dimensional space (e.g. 2D surface in 3D space)

!! Provides a place for data to be located

!! Defines how data is interpolated

Meshes

Mesh types

!! 1D Curves

!! 2D/3D meshes

!!Rectilinear

!!Curvilinear

!!Unstructured

!!Points

!!Molecular

Unstructured

Rectilinear Curve

Curvilinear

Points

Molecular

Variables

!! Scalars, Vectors, Tensors

!! Sits on points or cells of a mesh

!!Points: linear interpolation

!!Cells: piecewise constant

!! Can have different dimensionality
than the mesh (e.g. 3D vector data
on a 2D mesh)

Materials

!! Describes disjoint spatial regions at a sub-grid level

!! Volume/area fractions

!! VisIt will do high-quality sub-grid material interface
reconstruction

Species

!! Similar to materials, describes sub-grid variable
composition

!! Used for mass fractions

!! Generally weights other scalars (e.g. partial
pressure)

Parallel meshes

!! Provides aggregation for meshes

!! A mesh may be composed of hundreds of thousands
of mesh “blocks”.

!! Allows data parallelism

AMR meshes

!! Mesh blocks can be associated with patches and
levels.

!! Allows for aggregation of meshes into AMR
hierarchy levels.

Developing a Database plugin

!! Three basic steps:

!!Use xmledit tool to describe basics of reader

!!Use xml2plugin tool to generate VisIt “glue” code.

!!Fill in required class methods

xmledit

!! GUI tool to edit all information related to plugins

!! Used to define type of
database, filename
extensions, etc.

!! Creates XML file that
describes your reader

Types of database plugins

!! Two axes: domains and time

!! Moving down and to the right adds
complexity

Single

Domain!

Multiple

Domain!

Single

Timestep!
STSD! STMD!

Multiple

Timesteps!
MTSD! MTMD!

We will make an “IEEE” plugin

!! Reads text file of points with data

!! Simple STSD database

Generate glue code

General Info

Makefile

!! xml2plugin takes your XML file and generates many
files

“Glue”

“Glue”

Implement your parts

!! You need to fill in:

!!Constructor/Destructor

!!PopulateDatabaseMetaData

!!GetMesh

!!GetVar (can be empty, but won’t)

!!GetVectorVar (can be empty)

!! You need to write:

!!Code to read the file

!! Add class members as necessary

Build, install, and run

!! Makefile will automatically put plugin in your
~/.visit/plugins directory or in the public location if
you desire.

!! VisIt will load your plugin at launch

How can we better understand data?

Hank Childs, Lawrence Berkeley Lab & UC Davis June 13, 2011

Mesh-Based

Simulation

Data

Visualization works because it uses the brain’s highly

effective visual processing system.

Billions of

data points

Millions of pixels

But is this still a good idea at extreme scale?

!! (Note that visualization is often

reducing the data … so we
are frequently *not* trying to

render all of the data points.)

Visualization works because it uses the brain’s highly

effective visual processing system.

Billions of

data points

One idea: add more pixels!

35M pixel powerwall

!! Bonus: big displays act as collaboration centers.

!! But rendering so many pixels is hard … cannot
simply use a GPU

Increased resolution often leads to
small but important differences

27B elements 1B elements

These differences are normally hard to see.

The best solution is often to add quantitative

metrics.

Topological analysis was used to count and
compare the number of bubbles.

Credit:

Daniel Laney, Timo

Bremer, Valerio

Pascucci, et al.

Can we build metrics

like this for the many

scientific problems we
are interested in?

6

Comparative techniques have applications to better visualization
of time-varying data.

Rayleigh-Taylor

Instability

7

Comparative techniques have applications with parameter
studies/ensembles

Average Speed

 over all 25

Studying 25 Rayleigh-Taylor Instability calculations (all at 10us)

Two “knobs”: turbulent viscosity coefficient, buoyancy coefficient

Five values for each knob, 25 pairs total

Max Speed

 over all 25

Min Speed

 over all 25

Biggest

difference

 over all 25
(is this uncertainty

quantification?)

8

Comparative techniques have applications with parameter
studies/ensembles

Speed

for one

simulation K0=V0, K1=V0 "

K0=V4, K1=V4 "

…
K0=V0, K1=V1 "

Coloring by

Simulation ID

with maximum

speed

Coloring by

“Knob 0”

(buoyancy)

with maximum

speed

K0=V0"

K0=V1"

K0=V2"

K0=V3"

K0=V4"

Coloring by

“Knob 1”

(viscosity)

with maximum

speed

K1=V0"

K1=V1"

K1=V2"

K1=V3"

K1=V4"

Summary

!! The purpose of these slides was to show more than
parallel isosurfacing…

